《Apache Spark 设计与实现》

简介:

本文主要讨论 Apache Spark 的设计与实现,重点关注其设计思想、运行原理、实现架构及性能调优,附带讨论与 Hadoop MapReduce 在设计与实现上的区别。不喜欢将该文档称之为“源码分析”,因为本文的主要目的不是去解读实现代码,而是尽量有逻辑地,从设计与实现原理的角度,来理解 job 从产生到执行完成的整个过程,进而去理解整个系统。

讨论系统的设计与实现有很多方法,本文选择 问题驱动 的方式,一开始引入问题,然后分问题逐步深入。从一个典型的 job 例子入手,逐渐讨论 job 生成及执行过程中所需要的系统功能支持,然后有选择地深入讨论一些功能模块的设计原理与实现方式。也许这样的方式比一开始就分模块讨论更有主线。

本文档面向的是希望对 Spark 设计与实现机制,以及大数据分布式处理框架深入了解的 Geeks。

因为 Spark 社区很活跃,更新速度很快,本文档也会尽量保持同步,文档号的命名与 Spark 版本一致,只是多了一位,最后一位表示文档的版本号。

由于技术水平、实验条件、经验等限制,当前只讨论 Spark core standalone 版本中的核心功能,而不是全部功能。诚邀各位小伙伴们加入进来,丰富和完善文档。

关于学术方面的一些讨论可以参阅相关的论文以及 Matei 的博士论文,也可以看看我之前写的这篇 blog。

好久没有写这么完整的文档了,上次写还是三年前在学 Ng 的 ML 课程的时候,当年好有激情啊。这次的撰写花了 20+ days,从暑假写到现在,大部分时间花在 debug、画图和琢磨怎么写上,希望文档能对大家和自己都有所帮助。

内容

本文档首先讨论 job 如何生成,然后讨论怎么执行,最后讨论系统相关的功能特性。具体内容如下:

  • Overview 总体介绍
  • Job logical plan 介绍 job 的逻辑执行图(数据依赖图)
  • Job physical plan 介绍 job 的物理执行图
  • Shuffle details 介绍 shuffle 过程
  • Architecture 介绍系统模块如何协调完成整个 job 的执行
  • Cache and Checkpoint 介绍 cache 和 checkpoint 功能
  • Broadcast 介绍 broadcast 功能
  • Job Scheduling 尚未撰写
  • Fault-tolerance 尚未撰写

可以直接点 md 文件查看。

喜欢看 pdf 版本的可以去 这里 下载。

如果使用 Mac OS X 的话,推荐下载 MacDown 后使用 github 主题去阅读这些文档。

示例

写文档期间为了 debug 系统,自己设计了一些 examples,放在了 SparkLearning/src/internals 下。

文章转载自 开源中国社区 [http://www.oschina.net]

相关文章
|
分布式计算 大数据 数据处理
Apache Spark:提升大规模数据处理效率的秘籍
【4月更文挑战第7天】本文介绍了Apache Spark的大数据处理优势和核心特性,包括内存计算、RDD、一站式解决方案。分享了Spark实战技巧,如选择部署模式、优化作业执行流程、管理内存与磁盘、Spark SQL优化及监控调优工具的使用。通过这些秘籍,可以提升大规模数据处理效率,发挥Spark在实际项目中的潜力。
1022 0
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
338 1
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
372 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
292 0
|
分布式计算 大数据 数据处理
Apache Spark在大数据处理中的应用
Apache Spark是大数据处理的热门工具,由AMPLab开发并捐赠给Apache软件基金会。它以内存计算和优化的执行引擎著称,提供比Hadoop更快的处理速度,支持批处理、交互式查询、流处理和机器学习。Spark架构包括Driver、Master、Worker Node和Executor,核心组件有RDD、DataFrame、Dataset、Spark SQL、Spark Streaming、MLlib和GraphX。文章通过代码示例展示了Spark在批处理、交互式查询和实时数据处理中的应用,并讨论了其优势(高性能、易用性、通用性和集成性)和挑战。【6月更文挑战第11天】
486 6
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
480 0
|
分布式计算 Spark 大数据
深入探究Apache Spark在大数据处理中的实践应用
【6月更文挑战第2天】Apache Spark是流行的开源大数据处理框架,以其内存计算速度和低延迟脱颖而出。本文涵盖Spark概述、核心组件(包括Spark Core、SQL、Streaming和MLlib)及其在数据预处理、批处理分析、交互式查询、实时处理和机器学习中的应用。通过理解Spark内部机制和实践应用,可提升大数据处理效率,发挥其在各行业的潜力。
|
消息中间件 分布式计算 关系型数据库
使用Apache Spark从MySQL到Kafka再到HDFS的数据转移
使用Apache Spark从MySQL到Kafka再到HDFS的数据转移
239 0
|
消息中间件 分布式计算 Serverless
CDC一键入湖:当 Apache Hudi DeltaStreamer 遇见 Serverless Spark
CDC一键入湖:当 Apache Hudi DeltaStreamer 遇见 Serverless Spark
272 2

推荐镜像

更多