Transformer模型简介及与视觉结合运用

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: Transformer模型简介及与视觉结合运用

什么是Transformer

Transformer是一种非常流行的深度学习模型,专门用于处理序列数据,例如文本、语音、图像等。Transformer 是由 Vaswani 等人在 2017 年提出的,并在大量的 NLP 任务中取得了出色的表现。
Transformer 模型是一个基于多头注意力机制的序列模型。它可以利用多个注意力头来学习不同的信息间的关系,并可以同时进行全局和局部的信息捕捉。Transformer 模型的优点在于它不依赖于固定长度的循环结构,因此可以在数据长度较长时保持高效。

其中多头注意力机制是一种关于注意力的强化版本,它是指在计算过程中,对于同一个问题,可以使用多个不同的注意力权重来确定注意力的分布。这意味着,在计算过程中,每个注意力权重都是独立的,每个权重可以单独进行计算。这样的计算方法不仅提高了注意力的效率,同时也提高了注意力的准确度。
多头注意力机制通常在深度学习任务,特别是自然语言处理任务中得到广泛应用。它可以用来提高模型对于长序列数据的处理能力,同时也提高了模型的泛化能力。例如,在机器翻译任务中,多头注意力机制可以用来在输入的长句子中确定注意力的分布,以更加准确的翻译出输出的句子。

Transformer 模型的训练和测试流程通常包括以下几个步骤:

准备训练数据,通常是文本数据。
对文本数据进行预处理,包括分词、词嵌入等。
利用训练数据训练Transformer模型。
使用训练好的模型对测试数据进行预测。
评估预测结果的准确性。

Transformer 模型的应用非常广泛,例如文本分类、语言翻译、情感分析等任务都可以使用Transformer模型来完成。

Transformer和计算机视觉结合的应用:

一个常见的应用是图像语义分割,其中 Transformer 可以用来学习图像的语义信息,同时还可以对图像的不同部分分配不同的权重。
此外,Transformer 也可以用来增强图像识别任务的准确性。例如,在图像识别任务中,Transformer 可以用来学习语义信息,同时还可以对不同的图像进行识别,从而提高准确性。

目录
相关文章
|
10月前
|
机器学习/深度学习
大模型开发:解释卷积神经网络(CNN)是如何在图像识别任务中工作的。
**CNN图像识别摘要:** CNN通过卷积层提取图像局部特征,池化层减小尺寸并保持关键信息,全连接层整合特征,最后用Softmax等分类器进行识别。自动学习与空间处理能力使其在图像识别中表现出色。
128 2
|
机器学习/深度学习 自然语言处理 算法
Transformer 模型:入门详解(1)
动动发财的小手,点个赞吧!
13475 1
Transformer 模型:入门详解(1)
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
多模态大模型技术原理与实战(3)
ChatGPT引爆了以AIGC(人工智能生成内容)为代表的第四范式 AI的市场,并成为 AI市场的热点
205 3
多模态大模型技术原理与实战(3)
|
6月前
|
人工智能 文字识别 机器人
多模态大模型技术原理及实战(5)
国内外多模态大模型对比
185 6
|
6月前
|
物联网 PyTorch 算法框架/工具
多模态大模型技术原理及实战(6)
中小型公司大模型构建之路如何选择
81 4
|
6月前
|
机器学习/深度学习 自然语言处理 并行计算
多模态大模型技术原理与实战(2)
大模型被广泛应用有以下几个前提:效果好、效率高、成本可控,目前,大模型在这几个方面还不够理想。
217 5
|
6月前
|
机器学习/深度学习 编解码 自然语言处理
多模态大模型技术原理与实战(4)
本文介绍了多模态大模型的核心技术,包括数据集标注、数据表征、文本生成图像/语音/视频的方法、语音生成技术、视频生成模型以及跨模态融合技术。重点讨论了不同模型如GAN、VAE、Transformer和扩散模型的应用,并介绍了高效训练方法如Prefix Tuning、LORA等。此外,还详细描述了GPT-4的核心技术,如Transformer架构及其衍生物。
257 5
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC基础模型——Transformer
【1月更文挑战第12天】AIGC基础模型——Transformer
220 4
AIGC基础模型——Transformer
|
10月前
|
机器学习/深度学习 自然语言处理 数据挖掘
预训练语言模型中Transfomer模型、自监督学习、BERT模型概述(图文解释)
预训练语言模型中Transfomer模型、自监督学习、BERT模型概述(图文解释)
285 0
|
机器学习/深度学习 存储 人工智能
大语言模型的预训练[1]:基本概念原理、神经网络的语言模型、Transformer模型原理详解、Bert模型原理介绍
大语言模型的预训练[1]:基本概念原理、神经网络的语言模型、Transformer模型原理详解、Bert模型原理介绍
大语言模型的预训练[1]:基本概念原理、神经网络的语言模型、Transformer模型原理详解、Bert模型原理介绍

热门文章

最新文章