找出字符串中第一个匹配项的下标 (LeetCode 28)
Description
给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle 不是 haystack 的一部分,则返回 -1 。
Sample Input 1
haystack = "sadbutsad", needle = "sad"
Sample Output 1
0
Sample Input 2
haystack = "leetcode", needle = "leeto"
Sample Output 2
-1
Tips
1 <= haystack.length, needle.length <= 104
haystack
和needle
仅由小写英文字符组成
算法思想:
当 needle 是空字符串时,我们应当返回什么值呢?这是一个在面试中很好的问题。 对于本题而言,当 needle 是空字符串时我们应当返回 0 。这与C语言的 strstr() 以及 Java的 indexOf() 定义相符。
KMP的经典思想就是:当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,利用这些信息避免从头再去做匹配。
KMP主要应用在字符串匹配上。
KMP的主要思想是当出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。
所以如何记录已经匹配的文本内容,是KMP的重点,也是next数组肩负的重任。
其实KMP的代码不好理解,一些同学甚至直接把KMP代码的模板背下来。
没有彻底搞懂,懵懵懂懂就把代码背下来太容易忘了。
不仅面试的时候可能写不出来,如果面试官问:next数组里的数字表示的是什么,为什么这么表示?
关于前缀表:
next数组就是一个前缀表(prefix table)。
前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配。
为了清楚地了解前缀表的来历,我们来举一个例子:
要在文本串:aabaabaafa 中查找是否出现过一个模式串:aabaaf。
请记住文本串和模式串的作用,对于理解下文很重要,要不然容易看懵。所以说三遍:
要在文本串:aabaabaafa 中查找是否出现过一个模式串:aabaaf。
要在文本串:aabaabaafa 中查找是否出现过一个模式串:aabaaf。
要在文本串:aabaabaafa 中查找是否出现过一个模式串:aabaaf。
可以看出,文本串中第六个字符b 和 模式串的第六个字符f,不匹配了。如果暴力匹配,发现不匹配,此时就要从头匹配了。
但如果使用前缀表,就不会从头匹配,而是从上次已经匹配的内容开始匹配,找到了模式串中第三个字符b继续开始匹配。
首先要知道前缀表的任务是当前位置匹配失败,找到之前已经匹配上的位置,再重新匹配,此也意味着在某个字符失配时,前缀表会告诉你下一步匹配中,模式串应该跳到哪个位置。
记录下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。
关于时间复杂度分析:
其中n为文本串长度,m为模式串长度,因为在匹配的过程中,根据前缀表不断调整匹配的位置,可以看出匹配的过程是O(n),之前还要单独生成next数组,时间复杂度是O(m)。所以整个KMP算法的时间复杂度是O(n+m)的。
暴力的解法显而易见是O(n × m),所以KMP在字符串匹配中极大地提高了搜索的效率。
为了和力扣题目28.实现strStr保持一致,方便大家理解,以下文章统称haystack为文本串, needle为模式串。
都知道使用KMP算法,一定要构造next数组。
代码如下:
class Solution {
public:
void getNext(int* next, const string& s) {
int j = -1;
next[0] = j;
for(int i = 1; i < s.size(); i++) { // 注意i从1开始
while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
j = next[j]; // 向前回退
}
if (s[i] == s[j + 1]) { // 找到相同的前后缀
j++;
}
next[i] = j; // 将j(前缀的长度)赋给next[i]
}
}
int strStr(string haystack, string needle) {
if (needle.size() == 0) {
return 0;
}
int next[needle.size()];
getNext(next, needle);
int j = -1; // // 因为next数组里记录的起始位置为-1
for (int i = 0; i < haystack.size(); i++) { // 注意i就从0开始
while(j >= 0 && haystack[i] != needle[j + 1]) { // 不匹配
j = next[j]; // j 寻找之前匹配的位置
}
if (haystack[i] == needle[j + 1]) { // 匹配,j和i同时向后移动
j++; // i的增加在for循环里
}
if (j == (needle.size() - 1) ) { // 文本串s里出现了模式串t
return (i - needle.size() + 1);
}
}
return -1;
}
};
java:
class Solution {
/**
* 基于窗口滑动的算法
* <p>
* 时间复杂度:O(m*n)
* 空间复杂度:O(1)
* 注:n为haystack的长度,m为needle的长度
*/
public int strStr(String haystack, String needle) {
int m = needle.length();
// 当 needle 是空字符串时我们应当返回 0
if (m == 0) {
return 0;
}
int n = haystack.length();
if (n < m) {
return -1;
}
int i = 0;
int j = 0;
while (i < n - m + 1) {
// 找到首字母相等
while (i < n && haystack.charAt(i) != needle.charAt(j)) {
i++;
}
if (i == n) {// 没有首字母相等的
return -1;
}
// 遍历后续字符,判断是否相等
i++;
j++;
while (i < n && j < m && haystack.charAt(i) == needle.charAt(j)) {
i++;
j++;
}
if (j == m) {// 找到
return i - j;
} else {// 未找到
i -= j - 1;
j = 0;
}
}
return -1;
}
}
Created by Ss1Two on 2023/2/9