长度最小的子数组 (LeetCode 209)
Description
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
Sample Input 1
target = 7, nums = [2,3,1,2,4,3]
Sample Output 1
2
Sample Input 2
target = 4, nums = [1,4,4]
Sample Output 2
1
Sample Input 3
target = 11, nums = [1,1,1,1,1,1,1,1]
Sample Output 3
0
算法思想:
暴力破解法:
这道题目暴力解法当然是 两个for循环,然后不断的寻找符合条件的子序列,时间复杂度很明显是O(n^2)。
代码如下:
int minSubArrayLen(int target, int* nums, int numsSize){
//初始化最小长度为INT_MAX
int minLength = INT_MAX;
int sum;
int left, right;
for(left = 0; left < numsSize; ++left) {
//每次遍历都清零sum,计算当前位置后和>=target的子数组的长度
sum = 0;
//从left开始,sum中添加元素
for(right = left; right < numsSize; ++right) {
sum += nums[right];
//若加入当前元素后,和大于target,则更新minLength
if(sum >= target) {
int subLength = right - left + 1;
minLength = minLength < subLength ? minLength : subLength;
}
}
}
//若minLength不为INT_MAX,则返回minLnegth
return minLength == INT_MAX ? 0 : minLength;
}
滑动窗口法:
所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。
那么滑动窗口如何用一个for循环来完成这个操作呢。
首先要思考 如果用一个for循环,那么应该表示 滑动窗口的起始位置,还是终止位置。
如果只用一个for循环来表示 滑动窗口的起始位置,那么如何遍历剩下的终止位置?
此时难免再次陷入 暴力解法的怪圈。
所以 只用一个for循环,那么这个循环的索引,一定是表示 滑动窗口的终止位置。
在本题中实现滑动窗口,主要确定如下三点:
- 窗口内是什么?
- 如何移动窗口的起始位置?
- 如何移动窗口的结束位置?
窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。
窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。
while(sum >= target) {
int subLength = right - left + 1;
minLength = minLength < subLength ? minLength : subLength;
sum -= nums[left++];
}
可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)暴力解法降为O(n)。
代码如下:
int minSubArrayLen(int target, int* nums, int numsSize){
//初始化最小长度为INT_MAX
int minLength = INT_MAX;
int sum = 0;
int left = 0, right = 0;
//右边界向右扩展
for(; right < numsSize; ++right) {
sum += nums[right];
//当sum的值大于等于target时,保存长度,并且收缩左边界
while(sum >= target) {
int subLength = right - left + 1;
minLength = minLength < subLength ? minLength : subLength;
sum -= nums[left++];
}
}
//若minLength不为INT_MAX,则返回minLnegth
return minLength == INT_MAX ? 0 : minLength;
}
java代码如下:
class Solution {
// 滑动窗口
public int minSubArrayLen(int s, int[] nums) {
int left = 0;
int sum = 0;
int result = Integer.MAX_VALUE;
for (int right = 0; right < nums.length; right++) {
sum += nums[right];
while (sum >= s) {
result = Math.min(result, right - left + 1);
sum -= nums[left++];
}
}
return result == Integer.MAX_VALUE ? 0 : result;
}
}
$$ Created by Ss1Two on 2023/2/8 $$