AARRR(海盗模型)|原理+Python可视化实现

简介: 对于大量的用户数据,我们通常要进行用户生命周期建设去理解和维护用户,这时就需要用到大名鼎鼎的AARRR模型了。

AARRR模型

对于大量的用户数据,我们通常要进行用户生命周期建设去理解和维护用户,这时就需要用到大名鼎鼎的AARRR模型了。

一、AARRR概念

AARRR模型因为其爆炸性的增长方式通常又被称为海盗模型,其本质由获客、激活、留存、收益、传播5个阶段组成,对这五个阶段的解释如下:

  • Acquisition(获客):用户从不同的渠道进入产品;
  • Activation(激活):用户在产品内部使用核心功能(完成某个特定任务);
  • Retention(留存):用户连续性的使用产品;
  • Revenue(收益):用户对产品产生了付费行为;
  • Referral(传播):用户推荐他人来使用你的产品。

对于AARRR,我们可以用漏斗图来表示整体的转化过程,示例图如下:
在这里插入图片描述

从转化链路来看,从获客到传播的整个过程中,每向下深入一个层级,对应的用户数就会照上一层有一定的损失,因此层级越向下,对应的漏斗也就变的越窄,在使用实际数据绘制漏斗图的情况下我们也可以从漏斗的变化中看出对应转化率的变化。

二、AARRR策略

从策略的角度看,几个过程中应该做出的思考如下:

  • 获客:怎样找到用户?怎么让用户找到你?
  • 激活:怎么给用户良好的“初体验”?
  • 留存:怎么让用户留下来?
  • 收益:怎么让用户消费?
  • 传播:怎么让用户和其他人进行分享?

有了这些思考,该怎样去解决这些问题呢?我们以“PDD”平台为例来进行拆解。

1. 获客:砸钱,投广告

对于各大平台来说,最有效率的获客方式就是进行广告投放,PDD也不例外,我们在各大互联网平台、电视节目、线下商场中都看到过他进行投放的广告,这就是一种最普遍的获客方式。

2. 激活:转盘、助力、砍刀

可以说获客多数情形下是交给“别人”去做的事情,而从激活开始就是平台自身需要进行思考的问题了,当我们第一次进入到PDD平台的时候,通常会直接弹出一个红包让你打开,这个红包里可能是无门槛优惠券,也可能是让你免费获得某个商品进行砍价的资格,但无论是什么,它的目的都是给用户展示出“豪横”的一面,这也不失为一种有效的激活方式。

除了第一印象,剩下的就是根据各种算法去推荐用户喜欢的商品从而提高用户的活跃度与使用体验。

3. 留存:促销、优惠、免费

让用户留在平台是一个很头疼的问题,在这个问题上PDD提供了两个有趣的方向:1、助力玩法,免费获取商品,2、卖场销售模式,低价购物,这两个方向充分抓住了人们对于“免费”和“低价”的重视程度,从而也就解决了留存的问题。

4. 收益:购物

作为一个能够进行购物的电商平台,当用户收到优惠券的时候,产生消费行为就不是什么难事了。

5. 传播:帮忙砍价

关于传播,相信很多人都小有获益(shen shou qi hai):七大姑八大姨让你帮忙的链接接踵而至;天天有人追着屁股让你砍他一“刀”;突然出现不知名的互助群......此类事件的出现也充分体现了PDD在传播上玩法的强大之处。

从上面的例子中我们可以总结一下对于这几个阶段可以执行的策略:

阶段 核心 策略
获客 获取用户 1、设计精致的曝光内容
2、选择不同的曝光渠道(抖音、朋友圈、百度等)
激活 提高活跃度 1、设计具有吸引力的初次展示页
2、快速根据用户行为判断偏好
3、根据偏好推荐,从而提高活跃度
留存 提高留存率,减少流失 1、对用户分层,对待流失用户提供策略
2、收集用户需求,提供有价值的服务
收益 获取收入 1、促销吸引用户购买
2、发放优惠券,吸引用户购买
传播 自传播 1、通过奖励,鼓励用户传播
2、根据影响力,制定不同的奖励策略

三、AARRR指标

对于AARRR模型的5个不同阶段,我们需要通过不同的指标去进行衡量,对于每个阶段常用的衡量指标如下:

  1. 获取
  • 日新增用户数(DNU):每日注册并登陆的用户数。
  1. 激活
  • 日活跃用户数(DAU):每天登陆过产品的用户数(还有周活(WAU)、月活(MAU))
  • 日均使用时长(DAOT):平均每天每个用户使用时间($\frac{日总计在线时长}{日活跃用户数}$)
  1. 留存
  • 次日留存率:前一天新增的用户数在第二天使用的比例(还有三日留存率、七日留存率等)。
  • 日流失率:统计日使用产品,但随后7日未使用产品的用户占统计日活跃用户的比例。
  • 周流失率:上周使用过产品,但本周未使用产品的用户占上周活跃用户的比例。
  • 月流失率:上个月使用过产品,但是本月未使用产品的用户占上月活跃用户的比例。
  1. 收益
  • 付费率(PR):付费用户占活跃用户的比例。
  • 活跃付费用户数(APA):在统计时间区间内,成功付费的用户数。
  • 平均每用户收入(ARPU):在统计时间内,活跃用户产生的平均收入。
  • 平均每付费用户收入(ARPPU)在统计时间内,付费用户产生的平均收入。
  • 生命周期价值(LTV):用户在生命周期内创造的收入总和。
  1. 传播
  • K因子

K=(每个用户向他的朋友们发出的邀请的数量)×(接收到邀请的人转化为新用户的转化率)

四、Python绘制AARRR模型

通常我们需要用图像的形式去展示AARRR模型,从而制定相应的运营策略,我们可以使用python中的pyecharts进行绘制,绘制后会生成对应的html文件。

对于数据我们只需要知道每个阶段对应的用户数就可以了。

  • 使用Pyecharts进行绘制
from pyecharts import options as opts
from pyecharts.charts import Funnel

data = [13543, 11413, 10982, 7765, 5918]
phase = ['新用户', '激活用户', '留存用户', '消费用户', '传播用户']

funnel = Funnel(init_opts=opts.InitOpts())
funnel.add("阶段", [list(z) for z in zip(phase, data)])
funnel.set_global_opts(title_opts=opts.TitleOpts(title="AARRR模型"))
funnel.render("AARRR.html")

得到的结果如下:

在这里插入图片描述

相关文章
|
11天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
106 59
|
6天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
35 5
|
7天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
24 2
|
6天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
22 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
6天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
27 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
12天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
39 6
|
9天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
27 2
|
11天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
31 1
|
11天前
|
搜索推荐 Python
快速排序的 Python 实践:从原理到优化,打造你的排序利器!
本文介绍了 Python 中的快速排序算法,从基本原理、实现代码到优化方法进行了详细探讨。快速排序采用分治策略,通过选择基准元素将数组分为两部分,递归排序。文章还对比了快速排序与冒泡排序的性能,展示了优化前后快速排序的差异。通过这些分析,帮助读者理解快速排序的优势及优化的重要性,从而在实际应用中选择合适的排序算法和优化策略,提升程序性能。
26 1
|
12天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。