【网络篇】第二篇——IP协议与MAC地址详解(一)

本文涉及的产品
公网NAT网关,每月750个小时 15CU
简介: 【网络篇】第二篇——IP协议与MAC地址详解

IP协议


P地址是指互联网协议地址(英语:Internet Protocol Address,又译为网际协议地址),是IP Address的缩写。IP地址是IP协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。目前还有些ip代理软件,但大部分都收费。


主机: 配有IP地址, 但是不进行路由控制的设备; 路由器: 即配有IP地址, 又能进行路由控制; 节点: 主机和路由器的统称

理解源IP地址和目的IP地址


每台计算机都有一个唯一的IP地址,如果一台主机上的数据要传输到另一台主机,那么对端主机的IP地址就应该作为该数据传输时的目的IP地址。但仅仅知道目的IP地址是不够的,当对端主机收到该数据后,对端主机还需要对该主机做出响应,因此对端主机也需要发送数据给该主机,此时对端主机就必须知道该主机的IP地址。因此一个传输的数据当中应该涵盖其源IP地址和目的IP地址,目的IP地址表明该数据传输的目的地,源IP地址作为对端主机响应时的目的IP地址。


在数据进行传输之前,会先自顶向下贯穿网络协议栈完成数据的封装,其中在网络层封装的IP报头当中就涵盖了源IP地址和目的IP地址。

网段划分


IP地址分为两个部分,网络号和主机号

1.网络号:保证相互连接的网段具有不同的标识

2.主机号:同一网段内,主机之间具有相同的网络号,但是必须有不同的主机号

image.png

3.不同的子网其实就是把网络号相同的主机放在一起

4.如果在子网中新增一台主机,则这台主机的网络号和这个子网的网络号一致,但是这个主机号必须不能和子网中的其他主机重复。

通过合理设置主机号和网络号, 就可以保证在相互连接的网络中, 每台主机的IP地址都不相同.

那么问题来了, 手动管理子网内的IP, 是一个相当麻烦的事情.

有一种技术叫做DHCP, 能够自动的给子网内新增主机节点分配IP地址, 避免了手动管理IP的不便。

一般的路由器都带有DHCP功能. 因此路由器也可以看做一个DHCP服务器

过去曾经提出一种划分网络号和主机号的方案, 把所有IP 地址分为五类, 如下图所示

image.png

随着Internet的飞速发展,这种划分方案的局限性很快显现出来,大多数组织都申请B类网络地址, 导致B类地址很快就分配完了, 而A类却浪费了大量地址;

例如, 申请了一个B类地址, 理论上一个子网内能允许6万5千多个主机. A类地址的子网内的主机数更多.

然而实际网络架设中, 不会存在一个子网内有这么多的情况. 因此大量的IP地址都被浪费掉了.

针对这种情况提出了新的划分方案, 称为CIDR(Classless Interdomain Routing):。

  • 引入一个额外的子网掩码来区分网络号和主机号
  • 子网掩码也是一个32位的正整数,通常用一串0来结尾
  • 将IP地址和子网掩码进行 “按位与” 操作, 得到的结果就是网络号;
  • 网络号和主机号的划分与这个IP地址是A类、B类还是C类无关;

下面举个例子:

image.png

可见,IP地址与子网掩码做与运算可以得到网络号, 主机号从全0到全1就是子网的地址范围;

IP地址和子网掩码还有一种更简洁的表示方法,例如140.252.20.68/24,表示IP地址为140.252.20.68, 子网掩码的高24位是1,也就是255.255.255.0

  • 将IP地址中的主机地址全部设为0, 就成为了网络号, 代表这个局域网;
  • 将IP地址中的主机地址全部设为1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包;
  • 127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1;

IP地址的数量限制


IP协议使用IP地址来标识网络中的节点,分为IPv4和IPv6。虽然一直在推行IPv6,但目前主流还是IPv4。

IPv4使用32位二进制,分为A、B、C类(D类和E类有特殊用途,不用于标识网络中的节点),共计大约37亿多个可用单播地址。听上去很多,但是Internet发展太快了,早在2011年,IANA就宣布IPv4地址耗尽。


等等,既然2011年IPv4地址就没了,那怎么直到现在,大家都还在高高兴兴地用着IPv4地址呢?

CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率, 减少了浪费, 但是IP地址的绝对上限并没有增加), 仍然不是很够用. 这时候有三种方式来解决:


1.动态分配IP地址:只给接入网络的设备分配IP地址,因此同一个MAC地址的设备,每次接入互联网中,得到的IP地址不一定是相同的

2.NAT技术(后面重点介绍)

3.IPv6: IPv6并不是IPv4的简单升级版. 这是互不相干的两个协议, 彼此并不兼容; IPv6用16字节128位来表示一个IP地址; 但是目前IPv6还没有普及;

私有IP地址和公网IP地址


其实,在IPv4地址中,有一些特殊的地址范围:

A类地址中,10.0.0.0~10.255.255.255;

B类地址中,172.16.0.0~172.31.255.255;

C类地址中,192.168.0.0~192.168.255.255。

这些地址,我们称之为“私有地址”。

什么是私有地址?就是说,这些地址不会在Internet公网上出现,任何人都可以随便使用,不用花钱!

随便使用?那不会冲突吗?

并不会,因为这些地址只限于你所在的局域网内部使用,如家庭、企业、学校等,公网上并没有这些地址。就好像你在一个局域网用10.1.1.1,我在另一个局域网也使用10.1.1.1,只要保证各自局域网内不冲突就行。


可是,如果我们两人要通信呢?地址不是冲突了吗?


不不,私有地址只在局域网内部使用,如果要访问外网,需要NAT给你发的数据包整个容!


一般情况下,局域网接入公网的出口设备上都会配置NAT功能。家庭中常见的“无线路由器”,其实本质上不过是一台“无线NAT”而已!


如果NAT设备发现有私有数据包要去公网,会给它整个容:把里面IP封装中的私有地址换成公网地址,做好记录,再发出去;数据包回来时,再把地址换回来,发回你的电脑。


企业、学校的公网地址可以花钱向运营商购买固定地址,便于注册域名,向外提供网络服务;家庭上网一般由运营商动态分配。

image.png

图中电脑的IP地址是私有地址192.168.1.10,出口NAT设备接入Internet的公网地址是12.34.56.78,假设公网上有一台地址为98.76.54.32的www服务器,内网电脑通过浏览器访问它。

路由


本质就是在复杂的网络结构中,找出一条通往终点的路线;

路由的过程, 就是这样一跳一跳(Hop by Hop) “问路” 的过程. 所谓 “一跳” 就是数据链路层中的一个区间. 具体在以太网中指从源MAC地址到目的MAC地址之间的帧传输区间.

image.png

IP数据包的传输过程也和问路一样

  • 当IP数据包, 到达路由器时, 路由器会先查看目的IP;
  • 路由器决定这个数据包是能直接发送给目标主机, 还是需要发送给下一个路由器;
  • 依次反复, 一直到达目标IP地址;
  • image.png
  • 路由表可以使用route命令查看
  • 如果目的IP命中了路由表, 就直接转发即可;
  • 路由表中的最后一行,主要由下一跳地址和发送接口两部分组成,当目的地址与路由表中其它行都不匹配时,就按缺省路由条目规定的接口发送到下一跳地址

假设某主机上的网络接口配置和路由表如下:

  • image.png
  • 这台主机有两个网络接口,一个网络接口连到192.168.10.0/24网络,另一个网络接口连到192.168.56.0/24网络;
  • 路由表的 Destination 是目的网络地址, Genmask 是子网掩码, Gateway 是下一跳地址, Iface 是发送接口, Flags中 的 U 标志表示此条目有效(可以禁用某些 条目), G 标志表示此条目的下一跳地址是某个路由器的地址,没有 G 标志的条目表示目的网络地址是与本机接口直接相连的网络,不必经路由器转发;


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
3月前
|
数据采集 算法 数据挖掘
模块化控制协议(MCP)在网络中增强智能体执行效率的研究
随着Web3技术的迅速发展,去中心化应用和智能体在各种领域的应用逐渐增多。MCP(Modularized Control Protocol,模块化控制协议)作为一种增强智能体执行能力的关键技术,为Web3场景中的智能体提供了更强的灵活性和可扩展性。本文将探讨如何利用MCP技术提升智能体在Web3场景中的执行能力,并通过实例代码展示其实现路径。
289 22
|
21天前
|
监控 负载均衡 安全
WebSocket网络编程深度实践:从协议原理到生产级应用
蒋星熠Jaxonic,技术宇宙中的星际旅人,以代码为舟、算法为帆,探索实时通信的无限可能。本文深入解析WebSocket协议原理、工程实践与架构设计,涵盖握手机制、心跳保活、集群部署、安全防护等核心内容,结合代码示例与架构图,助你构建稳定高效的实时应用,在二进制星河中谱写极客诗篇。
WebSocket网络编程深度实践:从协议原理到生产级应用
|
1月前
|
运维 架构师 安全
二层协议透明传输:让跨域二层协议“无感穿越”多服务商网络
简介:本文详解二层协议透明传输技术,适用于企业网工、运营商及架构师,解决LLDP/LACP/BPDU跨运营商传输难题,实现端到端协议透传,提升网络韧性与运维效率。
|
3月前
|
监控 安全 Go
使用Go语言构建网络IP层安全防护
在Go语言中构建网络IP层安全防护是一项需求明确的任务,考虑到高性能、并发和跨平台的优势,Go是构建此类安全系统的合适选择。通过紧密遵循上述步骤并结合最佳实践,可以构建一个强大的网络防护系统,以保障数字环境的安全完整。
104 12
|
5月前
|
安全 网络协议 Linux
Linux网络应用层协议展示:HTTP与HTTPS
此外,必须注意,从HTTP迁移到HTTPS是一项重要且必要的任务,因为这不仅关乎用户信息的安全,也有利于你的网站评级和粉丝的信心。在网络世界中,信息的安全就是一切,选择HTTPS,让您的网站更加安全,使您的用户满意,也使您感到满意。
162 18
|
4月前
|
监控 安全 网络安全
网络安全新姿势:多IP配置的五大好处
服务器配置多IP地址,既能提升网络速度与安全性,又能实现多站点托管和故障转移。本文详解多IP的五大妙用、配置方法及进阶技巧。从理论到实践,合理规划IP资源,让服务器性能跃升新高度。
146 2
|
6月前
|
安全 网络安全 定位技术
网络通讯技术:HTTP POST协议用于发送本地压缩数据到服务器的方案。
总的来说,无论你是一名网络开发者,还是普通的IT工作人员,理解并掌握POST方法的运用是非常有价值的。它就像一艘快速,稳定,安全的大船,始终为我们在网络海洋中的冒险提供了可靠的支持。
208 22
|
6月前
|
网络协议 数据安全/隐私保护 网络架构
|
6月前
|
域名解析 API PHP
VM虚拟机全版本网盘+免费本地网络穿透端口映射实时同步动态家庭IP教程
本文介绍了如何通过网络穿透技术让公网直接访问家庭电脑,充分发挥本地硬件性能。相比第三方服务受限于转发带宽,此方法利用自家宽带实现更高效率。文章详细讲解了端口映射教程,包括不同网络环境(仅光猫、光猫+路由器)下的设置步骤,并提供实时同步动态IP的两种方案:自建服务器或使用三方API接口。最后附上VM虚拟机全版本下载链接,便于用户在穿透后将服务运行于虚拟环境中,提升安全性与适用性。
|
7月前
|
缓存 网络协议 API
掌握网络通信协议和技术:开发者指南
本文探讨了常见的网络通信协议和技术,如HTTP、SSE、GraphQL、TCP、WebSocket和Socket.IO,分析了它们的功能、优劣势及适用场景。开发者需根据应用需求选择合适的协议,以构建高效、可扩展的应用程序。同时,测试与调试工具(如Apipost)能助力开发者在不同网络环境下优化性能,提升用户体验。掌握这些协议是现代软件开发者的必备技能,对项目成功至关重要。

热门文章

最新文章