TICA解读:AI智能体与大数据构造在智能测试领域的运用

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 导读:各位小伙伴,TICA2022已于2022年12月15日圆满落幕。想必大家还畅游在知识的海洋里无法自拔吧?应大家要求,小编将为大家深入解读一些Topic。本次给大家带来的Topic,是由又仁老师在大会中分享的“AI智能体与大数据构造在智能测试领域的运用”。

议题背景介绍


随着人工智能技术的普及,越来越多基于AI能力的产品、服务被推出市场,形成横向以场景驱动、纵向以AI原子能力驱动的综合布局。然而,与AI市场快速爆发的猛烈态势形成对比的是对于AI系统质量的保障手段及方法论依然处于边探索边前进的状态。本次又仁老师的分享聚焦于AI语音系统的质量保证体系方法论,从大规模数据采样、构造到智能体实现运用等视角切入,为基于AI语音能力的相关质量保障工作提供思路,分享可运用于工程实践的相关方法&手段。

智能系统的现状及挑战


在过去5-10年,随着技术端的不断发展,智能系统也得到快速的发展。智能系统由数据、硬件、工程以及算法组成,其中算法在智能系统里有着不可撼动的位置,从云端链路、终端测试、模型评测、工程封装等环节,不难看出智能系统有着链路长、不可解释性、场景复杂、数据要求高等特点。

image.png那么现有情况下,存在哪些挑战呢?以智能音箱为例,现在的语音识别产品在厂商的智能家居规划蓝图中是扮演一个人与机器交流的桥梁,那在实际应用中就要求音箱能够听得到人说的话,同时还要求它听得清晰和听得准。这就提出了第一个挑战——信噪比。所谓信噪比,就是目标信号与干扰信号强度比值的对数,我们需要一定的信噪比,才能让机器听得清楚。但根据声音的传播特性,它在空气中衰减会非常大,但人在与智能音箱交流的过程中,可能会处在不同的位置和距离。这就给智能发展提出了一个难题,同时也是语音识别所面临的最大挑战。第二个挑战是非稳态的噪声影响。如果我们面对的是规律的噪声,应对的办法无疑会简单很多。但在实际的使用环境中,我们经常会面对的是带有突发性和不可预见性的噪音,这也给智能领域的发展带来了不小的挑战。第三是多声源的问题。智能音箱在使用的过程中,只会听从一个声源的指令,但在人机交流的过程中,必然会出现干扰源。如何处理这个干扰的问题,也困扰着相关开发者和智能测试人员。基于这些业务开发挑战,智能系统的 测试挑战在数据准备、模型选型、模型训练、模型评测、工程部署等五大方面也反映出了几大难题:测试场景复杂、评测数据缺乏、依赖人力投入。其中模型评测时开发和测试会在研发流程上存在一定重合,所以都需要进行模型效果评测,这个时候团队内的信任将会大大提高覆盖率和智能化效率。


image.png

随着智能系统测试的不断发展,我们根据不同的分级标准也划分出了一个智能测试能力等级,根据这个等级即可判断出智能测试领域的发展情况及不足。

image.png

智能测试探索实践之路

基于前期智能测试的挑战,同时为了提高智能测试能力等级,又仁老师开始思考如何让智能系统更加智能呢?先从多场景开始头脑风暴,接着进行非结构化大数据的模拟构造。就是这样一个出发点形成了现在完整的智能测试架构:从智能数据采集加工、多元化场景构造、智能测试自动化到智能智测中心的系统架构我们不难看出智能测试的核心是什么:大数据+智能体+自动化。

image.png

测试大数据是智能测试中最开始的一环,数据的质量往往影响着智能测试的质量。将多元化的数据源整合在一起形成完整的数据流为我们的智能测试打下了很好的数据基础。

image.png

基于不同的能力将智能体大致分为三类:单一小模型、视觉语音中模型、多模态智能系统。不同类型意味着他们的通用性和专用性有很大的不同,在不同场景下选择合适的智能体将大大促进智能系统的智能化。

image.png

端到端评测、工程测试、模型评测组成了智能测试架构中的自动化场景,这三种模型在并发能力、人力方面各不相同,有利有弊,在智能化场景测试中选择合适的场景来进行测试能达到事半功倍的效果。自动化流程中需要特别注意:模型部署、工程调用、端侧发布等环节,每一步的失误都会导致智能测试不那么智能。

image.png

image.png



相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3天前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
121 63
|
1天前
|
人工智能 JSON 自然语言处理
智能化AI工具-语言翻译与本地化
在全球化发展的背景下,语言翻译与本地化需求日益增长。无论是跨境电商、国际合作,还是本地化应用开发,都需要高效、准确的翻译解决方案。阿里云通义千问作为一款强大的大语言模型,不仅具备出色的自然语言理解能力,还能够在多语言翻译和本地化场景中发挥重要作用。本博客将详细介绍如何基于阿里云通义千问开发语言翻译与本地化工具,包括产品介绍、程序代码以及阿里云相关产品的具体使用流程。
21 10
|
14天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
14天前
|
机器学习/深度学习 人工智能 安全
AI与旅游业:旅行规划的智能助手
在数字化浪潮中,人工智能(AI)正重塑旅游业。本文探讨了AI如何通过个性化推荐、智能预测与预警、语音交互与虚拟助手、增强现实体验及可持续发展,提升旅行规划的效率、安全性和趣味性,推动旅游业创新与变革。
|
17天前
|
人工智能 自然语言处理 关系型数据库
从数据到智能,一站式带你了解 Data+AI 精选解决方案、特惠权益
从 Data+AI 精选解决方案、特惠权益等,一站式带你了解阿里云瑶池数据库经典的AI产品服务与实践。
|
17天前
|
人工智能 安全 搜索推荐
AI与能源管理:智能电网的未来
本文探讨了AI与智能电网的融合及其对能源管理的深远影响。智能电网利用先进的信息、通信和AI技术,实现电力的自主、智能化、高效管理。AI在精准预测电力需求、实时监测与故障诊断、智能能源调度、个性化能源服务和优化可再生能源利用等方面发挥关键作用,推动能源管理的高效、智能和可持续发展。
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
AI与法律行业:智能法律咨询
在科技飞速发展的今天,人工智能(AI)正逐渐渗透到法律行业,特别是在智能法律咨询领域。本文探讨了AI在智能法律咨询中的应用现状、优势及挑战,并展望了其未来发展前景。AI技术通过大数据、自然语言处理等手段,提供高效、便捷、低成本且个性化的法律服务,但同时也面临数据隐私、法律伦理等问题。未来,AI将在技术升级、政策推动和融合创新中,为用户提供更加优质、便捷的法律服务。
|
18天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
36 3
|
19天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
74 4
|
20天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在金融领域的应用:智能投资顾问
【10月更文挑战第31天】随着AI技术的快速发展,智能投资顾问在金融领域的应用越来越广泛。本文介绍了智能投资顾问的定义、工作原理、优势及未来发展趋势,探讨了其在个人财富管理、养老金管理、机构风险管理及量化交易中的典型应用,并分析了面临的挑战与机遇。智能投资顾问以其高效、低成本、个性化和全天候服务的特点,正逐步改变传统投资管理方式。