C++学习笔记(九)——模板初阶(泛型编程基础,函数模板,类模板)

简介: C++学习笔记(九)——模板初阶(泛型编程基础,函数模板,类模板)

泛型编程


基本概念


泛型编程(Generic Programming) 指在多种数据类型上皆可操作。和面向对象编程不同,它并不要求额外的间接层来调用函数,而是使用完全一般化并可重复使用的算法,算法效率与针对某特定数据类型而设计的算法相同。

下面我们来看一个问题:如何实现一个通用的交换函数囊?

void swap(int& a, int& b)
{
  int x = a;
  a = b;
  b = x;
}
void swap(char& a, char& b)
{
  char x = a;
  a = b;
  b = a;
}
void swap(double& a, double& b)
{
  double x = a;
  a = b;
  b = a;
}
int main()
{
  int c = 0, d = 1;
  char e = 'A', f = 'b';
  double a = 1.1, b = 2.2;
  swap(c, d);
  swap(e, f);
  swap(a, b);
  return 0;
}

使用该函数重重载虽然可以实现,但是有几个不好的地方:

1.重载的函数仅仅只是函数类型不同,代码的复用率比较低,只要求有新类型出现时,就需要增加对应的函数

2.代码的可维护性比较低,一个出错可能所有的重载均出错那我们能否告诉编译器一个模子,让编译器根据不同对的类型利用该模子来生成代码囊?

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

函数模板


函数模板概念


函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本.

函数模板格式


template<typename T1, typename T2,......,typename Tn>

返回值类型 函数名(参数列表){}

typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)

template<typename T>
void Swap( T& left, T& right)
{
T temp = left;
left = right;
right = temp;
}

函数模板原理


函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器

image.png

编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型然后产生一份专门处理double类型的代码,对于字符类型也是如此。

函数模板实例化


用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化。

1.隐式实例化:让编译器根据实参推演模板参数的实际类型

template<class T>
T Add(const T& left, const T& right)
{
return left + right;
}
int main()
{
int a1 = 10, a2 = 20;
double d1 = 10.0, d2 = 20.0;
Add(a1, a2);
Add(d1, d2);

思考:Add(a1,d1)可以吗?

该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型

通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,编译器无法确定此处到底该将T确定为int 或者 double类型而报错

注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅

处理方式:1. 用户自己来强制转化 2. 使用显式实例化

Add(a1,(int)d1);

2. 显式实例化:在函数名后的<>中指定模板参数的实际类型

int main(void)
{
int a = 10;
double b = 20.0;
// 显式实例化
Add<int>(a, b);
return 0;
}

模板参数的匹配原则


1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数

// 专门处理int的加法函数
int Add(int left, int right)
{
return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
return left + right;
}
void Test()
{
Add(1, 2); // 与非模板函数匹配,编译器不需要特化
Add<int>(1, 2); // 调用编译器特化的Add版本
}

2. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板

// 专门处理int的加法函数
int Add(int left, int right)
{
return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
return left + right;
}
void Test()
{
Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函
数 }

类模板


所谓类模板,实际上是建立一个通用类,其数据成员、成员函数的返回值类型和形参类型不具体指定,用一个虚拟的类型来代表。使用类模板定义对象时,系统会实参的类型来取代类模板中虚拟类型从而实现了不同类的功能。

类模板的定义格式


定义一个类模板与定义函数模板的格式类似,必须以关键字template开始,后面是尖括号括起来的模板参数,然后是类名,其格式如下:

template<class T1, class T2, ..., class Tn>
class 类模板名
{
// 类内成员定义
};

 如建立一个用来实现求两个数最大值的类模板

#include<iostream>
using namespace std;
template<typename T>
class Compare
{
public:
  Compare(T i, T j)
  {
    x = i;
    y = j;
  }
  T max()
  {
    return (x > y) ? x : y;
  }
private:
  T  x;
  T y;
};
int main()
{
  Compare<int> A(1, 2);
  Compare<double> B(2.1, 5.2);
  cout << "最大值为:" << A.max() << endl;
  cout << "最大值为:" << B.max() << endl;
  return 0;
}

运行结果如下:

image.png

在以上例子中,成员函数(其中含有类型参数)是定义类体内的。但是,类模板中的成员函数,也可以在类模板外定义。此时,若成员函数中有参数类型存在,则C++有一些特殊的规定:

temlate<typename 类型参数>
  函数类型 类名<类型参数>::成员函数名(形参表)
    函数体; 
   如上题中成员函数max在类模板外定义时,应该写成:
   template<typename T>
   T Compare<T>::max()
   {
    return (x>y)?x:y;
   } 

在类模板外定义成员函数函数举例。

template<typename T>
class Compare
{
public:
  Compare(T i, T j)
  {
    x = i;
    y = j;
  }
  T max();
private:
  T  x;
  T y;
};
template<class T>
T Compare<T> ::max()
{
  return (x > y) ? x : y;
};
int main()
{
  Compare<int> A(1, 2);
  Compare<double> B(2.1, 5.2);
  cout << "最大值为:" << A.max() << endl;
  cout << "最大值为:" << B.max() << endl;
  return 0;
}

类模板的实例化


类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类.

// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;

类模板Stack的使用举例

#include<iostream.h>
const int size=10;
template<class T>                     //模板声明,其中T为类型参数 
class Stack{                          //类模板为Stack 
 public:
  void init()
  {
   tos=0;
  }
  void push(T ob);                    //声明成员函数push的原型,函数参数类型为T类型
  T pop();                            //声明成员函数pop的原型,其返回值类型为T类型
 private:
  T stack[size];                      //数组类型为T,即是自可取任意类型 
  int tos; 
};
template<class T>                     //模板声明 
void Stack<T>::push(T ob)             //在类模板体外定义成员函数push 
{
  if(tos==size)
   {
    cout<<"Stack is full"<<endl;
    return;
   }
  stack[tos]=ob;
  tos++; 
}
template<typename T>                  //模板声明 
T Stack<T>::pop()                               //在类模板体外定义成员函数push
{
  if(tos==0)
   {
    cout<<"Stack is empty"<<endl;
    return 0;
   }
  tos--; 
  return stack[tos];  
}
int main()
{
 //定义字符堆栈 
 Stack<char> s1;                        //用类模板定义对象s,此时T被char取代
 s1.init();
 s1.push('a');
 s1.push('b');
 s1.push('c'); 
 for(int i=0;i<3;i++){cout<<"pop s1:"<<s1.pop()<<endl;}
 //定义整型堆栈 
 Stack<int> s2;                        //用类模板定义对象s,此时T被int取代
 s2.init();
 s2.push(1);
 s2.push(3);
 s2.push(5); 
 for(int i=0;i<3;i++){cout<<"pop s2:"<<s2.pop()<<endl;} 
 return 0; 
}

程序运行结果是:

pop s1:c
pop s1:b
pop s1:a
pop s2:5
pop s2:3
pop s2:1 
相关文章
|
1月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
43 0
|
1月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
110 0
|
3月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
112 12
|
4月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
98 16
|
4月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
4月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
4月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
5月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
5月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
4月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
234 6