实时数据中心建设思路与企业实践|青训营笔记

简介: 本篇文章主要分为四个方面介绍实时数据中心建设思路与企业实践:1. 企业数据架构;2. 数据中心案例;3. 实时数据生产;4. 数据服务

课程资料

课程链接:https://live.juejin.cn/4354/yc_Datacenter

课程PPT:https://bytedance.feishu.cn/file/boxcnUuosAaotJt4NbKSIsLtoS3

学员手册:https://juejin.cn/post/7130131931722678308#heading-104

完整手册:https://bytedance.feishu.cn/docx/doxcnECGEFkCKYqbxaDipK1qrVf

一、企业数据架构

image-20220817222505264

  • 企业整体数据架构:基础引擎、数据集成/生产/服务、开发和治理工具
  • 关键模块及数据流向

    • 数据集成

      • 业务数据收集:数据库变更数据收集(CDC)、业务日志收集(业务数据->数据处理系统)

      image-20220817223451859

      • 大数据系统内传输:基于Flink丰富的connector体系 (数据系统内)

      image-20220817223545849

    • 数据生产:实时和离线生产pipeline (数据系统内)

    image-20220817223612498

    • 数据服务:统一数据服务架构(数据系统->业务系统)

    image-20220817223719671

二、数据中心案例

image-20220817223848239

  • 以房产业务举例说明数据中心建设目标和要求
  • 房产业务介绍:房产服务平台、经纪人、客户
  • 数据中心核心指标分析:供需、过程、结果
  • 数据中心查询要求:查询条件、数据结果、技术要求

三、实时数据生产

  • 案例生产方案分析:数据探查、明确指标口径和产出粒度、生产架构、计算难点
  • 数据探查:分析数据信息是否齐全,即基于原始数据计算指标可行性
  • 数据架构:lambda架构和全量计算架构比对,确定合适的生产架构方案

image-20220817224141957

  • 计算难点解决

    • 全量数据获取:hybrid source

    image-20220817224225396

    • 精确计算

      • 去重&更新处理:基于retract机制
      • 乱序问题解决:流join乱序问题方案
    • 计算效率

      • MiniBatch-聚合计算
      • MiniBatch-join

      image-20220817224605524

  • 数据质量

    image-20220817224510920

    • 任务稳定性:消费LAG、JVM、资源、算子
    • 数据正确性:和离线比对、趋势比对、异常值占比
  • 实时数仓

    image-20220817224717399

    • 数据分层:数据复用,减少重复开发
    • 数据管理:格式、元数据

四、数据服务

image-20220817224833028

  • 整体架构:查询引擎、查询优化和执行、稳定性、元数据
  • 案例查询方案分析

    • 如何更快的查询

      • 原始信息筛选和关联效率
      • 计算处理效率
      • 只关注目标所需数据
  • 关注目标信息

    • 列存
  • 原始信息筛选效率

    • OLAP引擎索引方案
  • 原始信息关联

    • join方案及优化
  • 计算效率

    • 向量化
  • 执行计划优化:RBO、CBO
  • 应用层优化

    • 宽表构建
    • 提升信息密度:bit化、bitmap
  • 查询稳定性

    • 熔断、限流、降级
  • 元数据管理:指标口径管理、查询生成
相关文章
|
19天前
|
存储 传感器 安全
边缘数据中心为何越来越受企业关注
边缘数据中心为何越来越受企业关注
|
9天前
|
存储 传感器 安全
边缘数据中心为何越来越受企业关注
随着AI技术的发展,边缘数据中心因其贴近用户、低延迟、高效率等优势,成为算力基础设施的重要组成部分。预计到2032年,其市场规模将超过500亿美元。本文将探讨边缘数据中心的优势、应用及发展趋势。
|
6月前
|
机器学习/深度学习 算法 数据挖掘
利用机器学习优化数据中心能效的策略与实践
【5月更文挑战第13天】 在数据中心管理和运营的众多挑战中,能源效率优化是降低运营成本和减少环境影响的关键因素。本文旨在探讨如何应用机器学习技术来提高数据中心的能效,通过智能化的数据分析和资源管理达到节能的目的。与传统的摘要不同,本文将直接深入探讨所采用的技术手段、实施步骤以及预期效果,为读者提供一种新颖的视角。
70 4
|
3月前
|
机器学习/深度学习 人工智能 运维
提升数据中心效率的关键:智能运维策略与实践
【7月更文挑战第39天】 在数字化时代,数据中心作为企业信息系统的心脏,其运行效率直接关系到企业的业务连续性和竞争力。本文将探讨如何通过智能运维(AIOps)策略来优化数据中心的性能,降低运营成本,并提高服务质量。我们将分析当前数据中心面临的挑战,介绍智能运维的基本概念,以及实施智能运维时需要考虑的关键因素。最后,本文将提供一系列实用的智能运维实践案例,帮助读者理解如何将这些策略应用于实际工作中。
|
6月前
|
机器学习/深度学习 敏捷开发 测试技术
深入理解自动化测试:框架选择与实践挑战利用机器学习技术优化数据中心冷却系统
【5月更文挑战第27天】 在现代软件开发周期中,自动化测试已成为确保产品质量和加快市场投放的关键步骤。本文深入探讨了自动化测试的框架选择问题,并剖析了实施过程中面临的挑战及其解决方案。通过比较不同测试框架的特点,我们旨在为读者提供一套明确的指导原则,帮助他们根据项目需求做出恰当的技术决策。同时,文中还分享了实际案例和最佳实践,以期帮助开发团队克服实施自动化测试时可能遇到的障碍。
|
6月前
|
机器学习/深度学习 传感器 运维
提升数据中心效能:智能运维策略与实践
【4月更文挑战第6天】在数字化时代,数据中心作为企业信息架构的核心,其稳定性和效率直接影响到业务连续性和客户满意度。随着技术的进步,传统的数据中心运维模式已经不能满足现代高效、智能化的需求。本文将探讨如何通过智能运维(AIOps)策略,结合大数据分析和机器学习技术,实现数据中心的自动化管理、故障预测及快速响应,以提升整体效能并降低运营成本。
|
6月前
|
存储 机器学习/深度学习 运维
提升数据中心能效:现代运维策略与实践
【5月更文挑战第6天】 在数字化时代,数据中心作为信息处理的核心设施,其能源消耗和环境影响成为业界关注的焦点。本文将探讨如何通过现代运维策略和技术手段提升数据中心的能效,同时保证系统的可靠性和服务的连续性。文章将详细分析数据中心能耗的主要来源,介绍先进的能效优化措施,并通过案例分析展示这些措施的实际效果,为数据中心管理者提供实用的能效改进建议。
|
人工智能 运维 新能源
阿里云数据中心绿色低碳实践项目入选“2022全国十大碳中和示范典型案例”
阿里云数据中心绿色低碳实践项目入选“2022全国十大碳中和示范典型案例”
阿里云数据中心绿色低碳实践项目入选“2022全国十大碳中和示范典型案例”
|
人工智能 边缘计算 算法
AI开发者大会之计算机视觉技术实践与应用:2020年7月3日《RPA+AI助力政企实现智能时代的人机协同》、《5G风口到来,边缘计算引领数据中心变革》、《数字化时代金融市场与AI算法如何结合?》
AI开发者大会之计算机视觉技术实践与应用:2020年7月3日《RPA+AI助力政企实现智能时代的人机协同》、《5G风口到来,边缘计算引领数据中心变革》、《数字化时代金融市场与AI算法如何结合?》
AI开发者大会之计算机视觉技术实践与应用:2020年7月3日《RPA+AI助力政企实现智能时代的人机协同》、《5G风口到来,边缘计算引领数据中心变革》、《数字化时代金融市场与AI算法如何结合?》