【微电网】基于风光储能和需求响应的微电网日前经济调度(Python代码实现)

简介: 【微电网】基于风光储能和需求响应的微电网日前经济调度(Python代码实现)

 目录

1 概述

2 知识点及数学模型

3 算例实现

3.1算例介绍

3.2风光参与的模型求解

3.3 风光和储能参与的模型求解

3.5 风光储能和需求响应都参与模型求解

3.6 结果分析对比

4 Python代码及算例数据


1 概述

近年来,微电网、清洁能源等已成为全球关注的热点。清洁能源在我国可持续发展战略中具有日益重要的地位,政府、企业、学术界均在清洁能源技术及其评价上做了大量工作[1]。

微电网(Micro-Grid)日前经济调度问题是指考虑电网的分时电价基础上,对常规负荷、光伏出力、风机出力进行日前(未来 24 小时)预测,然后充分利用微网中的储能等可调控手段,使微电网运行的经济性最优[2-5]。

需求响应是电力需求侧管理在电力市场中的最新发展[6]。

众多学者对此做了大量研究,文献[7]在考虑电价与负荷响应量相关性的基础上,建立了以运行成本最低、可再生能源消纳比例最高和用户满意度最好为目标的日前调度模型。文献[8]考虑风电功率以及可再生能源停运的不确定性,提出一种考虑风险的微电网日前随机优化调度方法。文献[9]以运行成本最小为优化目标、同时考虑储能,提出了一种微电网日前调度调度模型。文献[10]针对微电网新能源出力不确定的问题,提出了考虑电价激励需求响应下微电网日前优化调度方法。文献[11]以提高供电可靠性和能源利润为目的,构建考虑激励型DR和电池储能的优化模型,算例分析了激励型DR和电池储能对微网可靠性与盈利能力的影响。

本文以微电网风光、储能、与主网交换成本、需求侧响应成本为目标函数,考虑功率平衡约束、设备约束以及系统规划约束条件对此微电网进行优化调度,并通过峰值消减指数、可再生能源消纳率以及用户舒适度三个需求侧响应指标来量化需求侧响应效益。在允许微电网与主网进行功率交互的前提下,研究了微电网在不同情况下的调度方法。最后,通过实际算例分析了各种情况下的微电网经济优化及峰谷差最小运行方案。

 

2 知识点及数学模型

基于风光储能和需求响应的微电网日前经济调度(Python代码实现)【0】

http://t.csdn.cn/HhgWG

3 算例实现

3.1算例介绍

一个含有风机、光伏、蓄电池以及负荷的微电网系统见示意图3.1。

image.gif

风机的装机容量360kW,单位运维成本0.52元/kWh。光伏的装机容量 260kW,单位运维成本0.75元/kWh。蓄电池额定容量为700kWh,电池 SOC 运行范围 为[0.4,0.9],初始 SOC 值为 0.4,由充电至放电成本为 0.1 元/kWh,1个小时充放电功率最大为储能的20%。微网与主网允许交换功率不超过 200kW。一天的售电和购电价格见表1。

image.gif

风机出力、光伏出力、常规负荷日前(未来 24 小时)预测见图2,新能源预测出力和净负荷,净负荷表示的是风机、光伏满足负荷后的剩余功率,如图3所示。

image.gif        image.gif

3.2风光参与的模型求解

在无风光情况下:微电网所需功率全部来自主网,功率等于负荷,在已知负荷和分时电价情况下,可以直接相乘求解。但是由图7我们可以看出,超过了微网与主网交换功率限额。

在有风光参与的情况下,由于风机功率、光伏功率、微电网与主网交换功率都是可变的,故直接相乘得不到结果,通过粒子群算法求解。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.3 风光和储能参与的模型求解

要尽量满足用户负荷需求要,我们考虑未满足负荷用电量和,并与系统运行成本取权重作为新的目标函数。

通过制定策略:风力发电成本最低,所以对于可再生能源发电,优先发风机。然后我们采用允许弃风、弃光的方法,得到可再生能源的最优出力后,若较负荷所需功率不足,则由主网供电。还对风、光、储能和主网出力越限做了惩罚项处理。

3.4 风光和需求响应参与模型求解

对于需求响应参与的模型,我们先对负荷进行K-Means聚类算法,把负荷分为高峰、平段、低谷三个时段,如表2所示。通过1.4.1节的基于价格型需求策略得到需求响应后的负荷image.gif编辑,然后在调度时段内再采用激励型需求响应直接控制方式进行负荷转移,并给予补偿。

这里的出力策略和风光和储能参与的模型求解的策略方法一样,把储能出力换成可转入转出负荷。

image.gif

3.5 风光储能和需求响应都参与模型求解

通过把3.3节和3.4节结合起来,得到如下风光储能和需求响应都参与模型

3.6 结果分析对比

            image.gif

                   image.gif

                image.gif

                image.gif

image.gif

由图7-12可以看出,当只有风光参与供电的模型负荷缺额量很大,当加入储能后负荷缺额量降低了很多。在只考虑风光和需求响应时【电价型】可以很明显的看出,很好的起到了消峰填谷的作用。在风光储能和需求响应都参与的模型中,各方面的效果都有很大改善,如表3-7所示。

4 Python代码及算例数据

image.gif

链接:https://pan.baidu.com/s/19TZ8WUKeYivh8mylkO6fyw 

提取码:9jll

--来自百度网盘超级会员V3的分享


相关文章
|
2天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
3天前
|
机器学习/深度学习 自然语言处理 API
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
20 3
|
5天前
|
设计模式 缓存 测试技术
Python中的装饰器:功能增强与代码复用的艺术####
本文将深入探讨Python中装饰器的概念、用途及实现方式,通过实例演示其如何为函数或方法添加新功能而不影响原有代码结构,从而提升代码的可读性和可维护性。我们将从基础定义出发,逐步深入到高级应用,揭示装饰器在提高代码复用性方面的强大能力。 ####
|
3天前
|
算法 IDE API
Python编码规范与代码可读性提升策略####
本文探讨了Python编码规范的重要性,并深入分析了如何通过遵循PEP 8等标准来提高代码的可读性和可维护性。文章首先概述了Python编码规范的基本要求,包括命名约定、缩进风格、注释使用等,接着详细阐述了这些规范如何影响代码的理解和维护。此外,文章还提供了一些实用的技巧和建议,帮助开发者在日常开发中更好地应用这些规范,从而编写出更加清晰、简洁且易于理解的Python代码。 ####
|
6天前
|
缓存 测试技术 数据安全/隐私保护
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第29天】本文通过深入浅出的方式,探讨了Python装饰器的概念、使用场景和实现方法。文章不仅介绍了装饰器的基本知识,还通过实例展示了如何利用装饰器优化代码结构,提高代码的可读性和重用性。适合初学者和有一定经验的开发者阅读,旨在帮助读者更好地理解和应用装饰器,提升编程效率。
|
13天前
|
开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第22天】在Python的世界里,装饰器是一个强大的工具,它能够让我们以简洁的方式修改函数的行为,增加额外的功能而不需要重写原有代码。本文将带你了解装饰器的基本概念,并通过实例展示如何一步步构建自己的装饰器,从而让你的代码更加高效、易于维护。
|
10天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
14 3
|
14天前
|
开发框架 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第20天】在编程的海洋中,简洁与强大是航行的双桨。Python的装饰器,这一高级特性,恰似海风助力,让代码更优雅、功能更强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一步步深入其内涵与意义。
|
12天前
|
机器学习/深度学习 缓存 数据挖掘
Python性能优化:提升你的代码效率
【10月更文挑战第22天】 Python性能优化:提升你的代码效率
12 1
|
15天前
|
机器人 Shell Linux
【Azure Bot Service】部署Python ChatBot代码到App Service中
本文介绍了使用Python编写的ChatBot在部署到Azure App Service时遇到的问题及解决方案。主要问题是应用启动失败,错误信息为“Failed to find attribute 'app' in 'app'”。解决步骤包括:1) 修改`app.py`文件,添加`init_func`函数;2) 配置`config.py`,添加与Azure Bot Service认证相关的配置项;3) 设置App Service的启动命令为`python3 -m aiohttp.web -H 0.0.0.0 -P 8000 app:init_func`。

热门文章

最新文章