【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)

简介: 【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


image.gif

💥1 概述

近 年 来 ,随 着 大 量 分 布 式 电 源(distributed generation)接入配电网,使配电网朝着更加灵活的方向发展,配电网管理模式从被动向主动转变[1] 。状态估计是通过建立适当的网络模型对配电网进行在线监测和分析的功能。随着分布式能源集成对系统建模和运行的影响越来越大,对配电系统状态估计要求也越来越严格[2] 。目前,电力系统大多数据来源于数据采集与监控(SCADA)系统,但该系统量测数据采集周期较长,无法得到电网中的实时数据。虽然同步相量量测单元能够提供高精度的实时量测数据来提高状态估计精度[3] ,但由于成本和技术的限制,我国配电网安装的 PMU 装置数量有限,得到的实时量测数据较少。状态估计作为配电管理系统不可或缺的组成要素,其主要研究内容是如何在有限数量的 PMU 量测装置情况下尽可能地提高配电网状态估计精度。国内外已有大量学者针对最优 PMU 装置optimal PMU placementOPP)进行了大量的研究[4-9] 目前,PMU 量测装置的优化目标主要分为满足系统可观性(拓扑可观和数值可观)

[10-12] 和提高状态估计精度[13-15] 两大类,解决这两类问题的对应优化算法有数值优化算法和启发式优化算法。数值优化算法主要分为穷举法和整数规划法,虽然整数规划法发展较为成熟,但配电网节点数目较多,短时间不可能大规模安装 PMU 量测装置,所以整数规划法不满足系统可观性的要求。文献[16]从不可观测度优化的角度出发,利用整数规划模型求解,在误差最大的节点装置 PMU,但没有考虑到配电网系统中节点较多而零注入节点较少的情况。启发式算法 的全局搜索能力强,适用于非线性、高维度的模型求解问题。本文基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究。

📚2 运行结果

image.gif

主函数代码:

clc

clear

close all

format shortG

commandwindow;

%% parameters setting

nvar=30;   % number of variable

lb=0*ones(1,nvar); % lower bound

ub=1*ones(1,nvar);  % upper bound

popsize=1000; % population size

maxiter=1000; % max of iteation

c1=1;

c2=1;

damp=1;

%% initial population algorithm

tic

emp.var=[];

emp.fit=[];

emp.vel=[];

par=repmat(emp,popsize,1);

for i=1:popsize

   

   par(i).vel=lb+rand(1,nvar).*(ub-lb);

   R=rand(1,nvar);

   par(i).var=R>(1./(1+exp(-par(i).vel)));

   par(i).fit=IEEE_30_Bus(par(i).var);

 

end  

bpar=par;

[value,index]=min([par.fit]);

gpar=par(index);

   

%% main loop algorithm

BEST=zeros(maxiter,1);

for iter=1:maxiter

    for i=1:popsize

        par(i).vel=par(i).vel-...

                   c1*rand(1,nvar).*(bpar(i).var-par(i).var)-...

                   c2*rand(1,nvar).*(gpar.var-par(i).var);

       

       par(i).vel=par(i).vel*damp;        

       

       

       par(i).vel=min(par(i).vel,ub);

       par(i).vel=max(par(i).vel,lb);

       

       

       R=rand(1,nvar);

 

       par(i).var=R>(1./(1+exp(-par(i).vel)));

       

       

       par(i).fit=IEEE_30_Bus(par(i).var);

       

       

       if par(i).fit<bpar(i).fit

           bpar(i)=par(i);

           

           if bpar(i).fit<gpar.fit

               gpar=bpar(i);

           end

       end

    end

BEST(iter)=gpar.fit;

disp([ ' Iter = '  num2str(iter)  ' BEST = '  num2str(BEST(iter)) ])

end

%% results algorithm

disp([ ' Best Solution = ' num2str(find(gpar.var==1))]);

disp([ ' Best Fitness = ' num2str(gpar.fit)]);

disp([ ' Time = ' num2str(toc)]);

figure(1);

plot(BEST,'r');

xlabel('Iteration ');

ylabel(' Numbers of PMUs ');

legend('BEST');

title('BPSO');

gtext([' Best Solution =  ' num2str(find(gpar.var==1))   '   Best Fitness = ' num2str(gpar.fit) ] );

image.gif

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]曹鹏,刘敏,杭鲁庆.基于改进磷虾群算法的配电网PMU优化配置研究[J].电网与清洁能源,2022,38(04):61-67.

🌈4 Matlab代码实现

https://ttaozhi.com/t/p.html?id=oel9l3Ef8J

相关文章
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
248 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
119 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章