上手隐式锁,显式锁

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 上手隐式锁,显式锁

127dfe6a50fc485ea1ef851c103066e1.png

隐式锁

情景一

对于聚簇索引记录来说,有一个 trx_id 隐藏列,该隐藏列记录着最后改动该记录的 事务id 。那么如果在当前事务中新插入一条聚簇索引记录后,该记录的 trx_id 隐藏列代表的的就是 当前事务的 事务id ,如果其他事务此时想对该记录添加 S锁 或者 X锁 时,首先会看一下该记录的trx_id 隐藏列代表的事务是否是当前的活跃事务,如果是的话,那么就帮助当前事务创建一个 X锁 (也就是为当前事务创建一个锁结构, is_waiting 属性是 false ),然后自己进入等待状态 (也就是为自己也创建一个锁结构, is_waiting 属性是 true )。

情景二

对于二级索引记录来说,本身并没有 trx_id 隐藏列,但是在二级索引页面的 Page Header 部分有一个 PAGE_MAX_TRX_ID 属性,该属性代表对该页面做改动的最大的 事务id ,如 果 PAGE_MAX_TRX_ID 属性值小于当前最小的活跃 事务id ,那么说明对该页面做修改的事务都已 经提交了,否则就需要在页面中定位到对应的二级索引记录,然后回表找到它对应的聚簇索引记 录,然后再重复 情景一 的做法。


session 1:

mysql> begin;


Query OK, 0 rows affected (0.00 sec) mysql> insert INTO student VALUES(34,"周八","二班");


Query OK, 1 row affected (0.00 sec)


session 2:  

mysql> begin;


Query OK, 0 rows affected (0.00 sec) mysql> select * from student lock in share mode; #执行完,当前事务被阻塞


执行下述语句,输出结果:  


mysql> SELECT * FROM performance_schema.data_lock_waits\G; *************************** 1. row ***************************                          ENGINE: INNODB


     REQUESTING_ENGINE_LOCK_ID: 140562531358232:7:4:9:140562535668584 REQUESTING_ENGINE_TRANSACTION_ID: 422037508068888


         REQUESTING_THREAD_ID: 64


           REQUESTING_EVENT_ID: 6


REQUESTING_OBJECT_INSTANCE_BEGIN: 140562535668584


       BLOCKING_ENGINE_LOCK_ID: 140562531351768:7:4:9:140562535619104 BLOCKING_ENGINE_TRANSACTION_ID: 15902


           BLOCKING_THREAD_ID: 64


             BLOCKING_EVENT_ID: 6


BLOCKING_OBJECT_INSTANCE_BEGIN: 140562535619104 1 row in set (0.00 sec)


隐式锁的逻辑过程如下


A. InnoDB的每条记录中都一个隐含的trx_id字段,这个字段存在于聚簇索引的B+Tree中。


B. 在操作一条记录前,首先根据记录中的trx_id检查该事务是否是活动的事务(未提交或回滚)。如果是活 动的事务,首先将 隐式锁 转换为 显式锁 (就是为该事务添加一个锁)。


C. 检查是否有锁冲突,如果有冲突,创建锁,并设置为waiting状态。如果没有冲突不加锁,跳到E。


D. 等待加锁成功,被唤醒,或者超时。


E. 写数据,并将自己的trx_id写入trx_id字段。


显式锁

通过特定的语句进行加锁,我们一般称之为显示加锁,

例如: 显示加共享锁:

select ....  lock in share mode

显示加排它锁:

select ....  for update

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
关系型数据库 MySQL 数据库
MySQL Innodb Purge简介
前言 为什么MySQL InnoDB需要Purge操作?明确这个问题的答案,首先还得从InnoDB的并发机制开始。为了更好的支持并发,InnoDB的多版本一致性读是采用了基于回滚段的的方式。另外,对于更新和删除操作,InnoDB并不是真正的删除原来的记录,而是设置记录的delete mark为1。
8672 1
|
SQL 关系型数据库 MySQL
从一个案例深入剖析InnoDB隐式锁和可见性判断(2)
从一个案例深入剖析InnoDB隐式锁和可见性判断
148 0
从一个案例深入剖析InnoDB隐式锁和可见性判断(2)
|
NoSQL 关系型数据库 索引
从一个案例深入剖析InnoDB隐式锁和可见性判断(1)
从一个案例深入剖析InnoDB隐式锁和可见性判断
从一个案例深入剖析InnoDB隐式锁和可见性判断(1)
|
关系型数据库 MySQL 索引
从一个案例深入剖析InnoDB隐式锁和可见性判断(3)
从一个案例深入剖析InnoDB隐式锁和可见性判断
117 0
|
存储 关系型数据库 MySQL
从一个案例深入剖析InnoDB隐式锁和可见性判断(4)
从一个案例深入剖析InnoDB隐式锁和可见性判断
|
4天前
|
调度 云计算 芯片
云超算技术跃进,阿里云牵头制定我国首个云超算国家标准
近日,由阿里云联合中国电子技术标准化研究院主导制定的首个云超算国家标准已完成报批,不久后将正式批准发布。标准规定了云超算服务涉及的云计算基础资源、资源管理、运行和调度等方面的技术要求,为云超算服务产品的设计、实现、应用和选型提供指导,为云超算在HPC应用和用户的大范围采用奠定了基础。
165973 17
|
11天前
|
存储 运维 安全
云上金融量化策略回测方案与最佳实践
2024年11月29日,阿里云在上海举办金融量化策略回测Workshop,汇聚多位行业专家,围绕量化投资的最佳实践、数据隐私安全、量化策略回测方案等议题进行深入探讨。活动特别设计了动手实践环节,帮助参会者亲身体验阿里云产品功能,涵盖EHPC量化回测和Argo Workflows量化回测两大主题,旨在提升量化投研效率与安全性。
云上金融量化策略回测方案与最佳实践
|
13天前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
9083 22
|
17天前
|
Cloud Native Apache 流计算
资料合集|Flink Forward Asia 2024 上海站
Apache Flink 年度技术盛会聚焦“回顾过去,展望未来”,涵盖流式湖仓、流批一体、Data+AI 等八大核心议题,近百家厂商参与,深入探讨前沿技术发展。小松鼠为大家整理了 FFA 2024 演讲 PPT ,可在线阅读和下载。
4815 12
资料合集|Flink Forward Asia 2024 上海站
|
17天前
|
自然语言处理 数据可视化 API
Qwen系列模型+GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。
下一篇
DataWorks