八、迁移学习和多任务学习

简介: 八、迁移学习和多任务学习

1、迁移学习


迁移学习是将某个任务学习到的知识(神经网络的参数信息)迁移到另外一个相似的任务中使用,从而重复利用相似任务学习共同之处,节省模型训练的时间,提高模型的训练效率和训练精度。如下图的神经网络,将之前训练好的神经网络的最后一层或者几层的参数重新随机初始化之后,应用到其他相似任务中,从而将当前训练好的知识进行前移使用。


4bae607a82704a7c8ced76f8ad3e405b.png

如在图像识别中,当前手头的任务是需要训练一个关于医学影像识别的分类器,但是没有过多的训练数据,则可以使用其他训练好的分类器,如猫/狗/车分类器,其中的部分学习到的知识(部分神经网络参数)应用到医学影像识别分类器中。或者在语音识别中,当前训练好了普通语音识别的分析器,但需要快速构建一个命令识别分类器,没有很多的命令训练数据,则可以将普通语音识别分类器部分神经网络的参数迁移到命令识别分类器中。


这样做的一个原因是因为,相似的任务中,神经网络学习到的知识具有相似性,从而在一定程度上可以进行迁移使用。但同时需要满足一个大的前提,即现有分类器的的训练数据量一定要超过目标分类器的训练数据量,否则,肯定是直接使用目标训练数据直接训练效果要更好。


总结来说,迁移学习(从任务A迁移到任务B)在满足下述条件时,才会有意义:

   任务A和任务B的输入相似

   任务A的数据量远超于任务B的数据量

   任务A和任务B有相似的底层特征,如都是图像,或者都是声音





2、多任务学习


之前所说的学习方式均使用一个神经网络结构来解决一个问题,如果使用单一的神经网络通过训练之后可以解决多个问题,则称为多任务学习。如给定在自动驾驶图像识别训练过程中,通常需要识别一幅图片之中是否包含多种物体,如是否包含车辆,行人,红绿灯,标志牌等等。这样,就需要使用单一的神经网络来是被不同的物体是否存在于同一张图片之中,称之为多任务学习。如下图所示:


ba34953f0f944a5ca25d3e03d674d2f1.png


多任务学习在满足以下条件时,会有意义:


  • 不同任务之间有相似的底层特征
  • 不同任务之间的训练数据量相似,对于某一项任务,其余任务总的数据量要要超这项任务
  • 需要使用足够大的神经网络进行训练和学习




3、端到端学习



端到端学习是相对于流水线学习而言的一种学习方式,如语音识别中,在端到端学习出现之前,会有一个复杂的流水线流程来实现一段语音的识别,流水线中包含很多繁琐的细节,每个细节中又包含许多繁杂的手工设计。而端到端学习省略了流水线中繁杂的细节设计,直接使用一个神经网络来替代流水线流程,通过给予大量的数据训练,在样本量足够的的情况下,可以超过流水线学习方法的性能。当前门禁系统使用流水线更加高效,因为没有足够多的样本来进行端到端的学习。


所以使用端到端学习的大前提是由足够的数据量来训练模型。






相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
4天前
|
人工智能 决策智能
2026年美赛C题——翻译及建模完整思路
《与星共舞》美国版(34季)融合评委打分与观众投票决定淘汰。本文基于公开数据,构建数学模型反推保密的观众投票数,对比排名法与百分比法效果,分析杰瑞·莱斯等争议选手案例,并评估舞者、明星特质影响,最终提出更公平、具观赏性的新票分融合体系。(239字)
395 1
|
8月前
|
机器学习/深度学习 存储 算法
SMOTE-XGBoost实战:金融风控中欺诈检测的样本不平衡解决方案
本文深入探讨金融支付风控领域中的欺诈检测问题,针对样本不平衡的核心痛点,提出一种基于动态密度SMOTE算法的改进方案,并结合优化后的XGBoost模型实现高性能检测。相比传统方法,本文方案在IEEE-CIS数据集上显著提升Recall(达0.85)和AUC-PR(达0.72),同时控制推理时延在合理范围。文章还详细解析特征工程体系、在线推理优化及动态阈值调整机制,并展望联邦学习与图神经网络等未来方向,为实际业务应用提供全面指导。
527 1
|
机器学习/深度学习 测试技术
如何选择合适的多任务学习模型?
【5月更文挑战第25天】如何选择合适的多任务学习模型?
290 5
|
机器学习/深度学习 自然语言处理 监控
智能客服系统集成技术解析和价值点梳理
在 2024 年的智能客服系统领域,合力亿捷等服务商凭借其卓越的技术实力引领潮流,它们均积极应用最新的大模型技术,推动智能客服的进步。
600 7
|
机器学习/深度学习 人工智能 算法
|
数据库
三大范式的特点
第一范式确保数据库表中每列都是不可分割的基本数据项,无重复列;第二范式在满足第一范式基础上,要求每个实例被唯一标识,属性完全依赖于主键;第三范式在满足第二范式基础上,排除非主键信息的冗余,避免数据重复。
391 0
|
机器学习/深度学习 人工智能 搜索推荐
【电商搜索】现代工业级电商搜索技术-中科大-利用半监督学习改进非点击样本的转化率预测
【电商搜索】现代工业级电商搜索技术-中科大-利用半监督学习改进非点击样本的转化率预测
|
存储 关系型数据库 MySQL
MySQL性能优化实践指南
【10月更文挑战第16天】MySQL性能优化实践指南
819 0
|
机器学习/深度学习 数据采集 算法
【2023 华数杯全国大学生数学建模竞赛】 C题 母亲身心健康对婴儿成长的影响 45页论文及python代码
本文通过收集390名3至12个月婴儿及其母亲的相关数据,运用结构方程模型、相关性分析和多种机器学习模型,研究了母亲身心健康对婴儿行为特征和睡眠质量的影响,并提出了改善母婴交互质量和提高婴儿睡眠质量的解决方案。
462 0
【2023 华数杯全国大学生数学建模竞赛】 C题 母亲身心健康对婴儿成长的影响 45页论文及python代码
|
自然语言处理 数据格式
【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT
【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT
394 1