基于PSO粒子群算法的MPPT最大功率跟踪Simulink仿真,PSO采用S函数实现

简介: 基于PSO粒子群算法的MPPT最大功率跟踪Simulink仿真,PSO采用S函数实现

1.算法描述

    MPPT控制器的全称是“最大功率点跟踪”(Maximum Power Point Tracking)太阳能控制器,是传统太阳能充放电控制器的升级换代产品。MPPT控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最大功率输出对蓄电池充电。应用于太阳能光伏系统中,协调太阳能电池板、蓄电池、负载的工作,是光伏系统的大脑。

   最大功率点跟踪系统是一种通过调节电气模块的工作状态,使光伏板能够输出更多电能的电气系统能够将太阳能电池板发出的直流电有效地贮存在蓄电池中,可有效地解决常规电网不能覆盖的偏远地区及旅游地区的生活和工业用电,不产生环境污染。

    目前,光伏阵列的最大功率点跟踪(MPPT)技术,国内外已有了一定的研究,发展出各种控制方法常,常用的有一下几种:恒电压跟踪法(ConstantVoltageTracking简称CVT)、干扰观察法(PerturbationAndObservationmethod简称P&O)、增量电导法(IncrementalConductancemethod简称INC)、基于梯度变步长的电导增量法等等。(这些算法只能用在无遮挡的条件下)

1)单峰值功率输出的MPPT的算法

   目前,在无遮挡条件下,光伏阵列的最大功率点跟踪(MPPT)的控制方法常用的有以下几种:

l恒电压跟踪法(ConstantVoltageTracking简称CVT)
l干扰观察法(PerturbationAndObservationmethod简称P&O)
l增量电导法(IncrementalConductancemethod简称INC)
l基于梯度变步长的电导增量法,等等。

2)多峰值功率输出MPPT算法

   普通的最大功率跟踪算法,如扰动观测发和电导增量法在一片云彩的遮挡下就有可能失效,不能实现真正意义的最大功率跟踪。目前,国际上也有人提出了多峰值的MPPT算法,主要包含如下三种:

结合常规算法的复合MPPT算法
Fibonacci法
短路电流脉冲法

PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

1.png

第①部分称为【记忆项】,表示上次速度大小和方向的影响;

第②部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;

第③部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

以上面两个公式为基础,再来看一个公式:

2.png

2.仿真效果预览
matlab2022a仿真如下:

3.png

3.MATLAB核心程序
4.png

.............................
 
 
persistent Pbest;
%persistent Pbestval;
 
persistent best_index;
 
persistent c1;
persistent c2;
persistent r1;
persistent r2;
 
switch flag,
    case 0,
        sizes = simsizes;
        sizes.NumContStates = 0;
        sizes.NumDiscStates = 0;
        sizes.NumOutputs     = 1;
        sizes.NumInputs      = 2;
        sizes.DirFeedthrough = 0;
        sizes.NumSampleTimes = 1;
        sys = simsizes(sizes);
        x0=[];
        str=[];
        ts=[0.004 ,0.001];
 
        % initialize the static variables
        first = 1;
        stop = 0;
        i = 0;
        mg = 0;
        count = 3;
        Nc_count = 0;
        Nre_count = 0;
        D_out = zeros(1, NP);                       %初始化D_out、U、fitval_current、fitval_new为全0
        D_out_current = zeros(1,NP);
        best_index = 1;
        %U = zeros(1, NP);
        %V = zeros(1, NP);
        fitval_current = zeros(1, NP);
        fitval_new = zeros(1, NP);
        
        fit_order = zeros(1, NP);
        
 
        Pbest = zeros(1, NP);
        Gbest = 0;
        %Gmaxval = 0;
        %X(:) = unifrnd(XL, XU, 1,NP)
        D_out_current(:) = linspace(XL+0.005,XU-0.005,NP);                 %在[-1,1]间均匀取值
        D_out(:) = D_out_current(:);
        MoveStep = unifrnd(-MaxStep, MaxStep, 1,NP);   %初始化单个细菌的移动速度
        MoveStep_PSO = zeros(1, NP);
        stable_flag = 1;                               %初始化,电路未稳定
        stable_count = 0;
        
        c1 = 0.030;
        c2 = 0.030;
        r1 = rand();
        r2 = rand();
 
    case 3,
        %if count == 3
         %count = count + 1;
            count = 1;
        %迭代完成,输出最优值
        if stop == 1;
            [best, best_index]= max(fitval_current);
            sys = D_out(best_index);
            return;
        end          
        %判断是否迭代完成
        if mg > maxgen
            stop = 1;
        end
        
        if mg == 0  % 第一代,只进行迭代,然后计算各自功率,作为初始比较功率fitval_current   
            
            if i == 0
                i= i + 1;
                sys = D_out_current(1);  
            elseif i > 1 && i < NP
                fitval_current(i-1) = adaptfunc(D_out_current(i-1),Uin);   %记录第一代的上一个个体的功率
                Pbest(i-1) = D_out_current(i-1);
                i= i + 1;
                sys = D_out_current(i);            
            elseif i == NP
                fitval_current(i-1) = adaptfunc(D_out_current(i-1),Uin);
                Pbest(i-1) = D_out_current(i-1);
                i= i + 1;
                sys = D_out_current(NP);
            elseif i == NP + 1
                fitval_current(i-1) = adaptfunc(D_out_current(i-1),Uin);
                Pbest(i-1) = D_out_current(i-1);
                [best, best_index]= max(fitval_current);
                Gbest = D_out_current(best_index);
                 i = 1;
                 Nc_count = Nc_count + 1;
                 Nre_count = Nre_count + 1;
                 mg = mg + 1;
                 for j = 1 : NP                       %第一代种群中个体进行游动
                    MoveStep_PSO = c1*r1*(Pbest(j)-D_out_current(j)) + c2*r2*(Gbest-D_out_current(j));
                    D_out(j) = D_out_current(j)+ MoveStep(j) + MoveStep_PSO;
                    if D_out(j) <= XL
                            D_out(j) = XL+0.001;
                        elseif D_out(j) >= XU
                            D_out(j) = XU-0.001;
                    end
                 end
                 sys = D_out(1);            
            else
                i= i + 1;
                sys = D_out_current(i);            
            end
            
            return;
            
        else   %第一代之后      
            
            if i > 1 && i < NP
                fitval_new(i-1) =adaptfunc(D_out(i-1), Uin);      %计算前一次占空比下的功率
                Pbest(i-1) = D_out(i-1);
                i = i + 1;
                sys = D_out(i);
            elseif i == NP
                fitval_new(i-1) =adaptfunc(D_out(i-1), Uin);
                Pbest(i-1) = D_out(i-1);
                i = i + 1;
                sys = D_out(NP);
            elseif i == 1
                i = i + 1;            
                sys = D_out(i);       
            elseif i == NP + 1 %种群迭代一次结束,开始进行新的一代种群繁殖                            
                %趋向性操作,判定运动方向
                fitval_new(i-1) =adaptfunc(D_out(i-1), Uin);
                Pbest(i-1) = D_out(i-1);
                r1 = rand();
                r2 = rand();
                for j = 1 : NP
                if (fitval_new(j) >= fitval_current(j))
                    D_out_current(j) = D_out(j);
                    fitval_current(j) =  fitval_new(j);
                else
                    MoveStep(j) = - MoveStep(j);  %若该方向功率未改进,说明不适应生存,改变方向运动
                end       
                end
                
                c1 = c1/3;
                c2 = c2/3;
 
                 D_out(:)                              %打印最新的占空比
                [best, best_index]= max(fitval_current);  %计算最大功率点,best为最大功率,best_index为最大功率点在种群中的位置            
                mg
                D_out(best_index)                   %显示最大功率点的占空比
                %Gbest = U(best_index)               %显示最大功率点的电压
                %Gmaxval = best                      %显示最大功率点的功率
                best
                fit_order = order(fitval_current,NP)    %显示当前种群功率从大到小顺序
 
                Gbest = D_out(best_index);
                % mutation
                if Nc_count == Nc %进行满Nc次趋向性操作            
                    Nc_count = 0;
                    Nre_count = Nre_count + 1;
                    %复制操作
                    MaxStep = MaxStep/2;
                    MoveStep = unifrnd(-MaxStep,MaxStep,1,NP);                 %每Nc次繁殖生成一次新的随机步长
                    [fitval_current,D_out_current]=Reproduction(fitval_current,D_out_current,NP);      %复制
                    D_out=D_out_current;
                    if Nre_count == Nre %进行满Nre次复制操作后迁移操作
                        Nre_count = 0;
                        for j=1:NP
                        if(rand(0,1)<Ped)
                            fitval_current = 0;
                            %MoveStep(i) = unifrnd(-MaxStep,MaxStep);
                            D_out(j) = unifrnd(XL,XU);
                        end
                        end
                    end
                else
                    Nc_count = Nc_count + 1;
                    for j=1:NP
                        MoveStep_PSO = c1*r1*(Pbest(j)-D_out(j)) + c2*r2*(Gbest-D_out(j));
                        D_out(j) = D_out(j) + MoveStep(j) + MoveStep_PSO;
                        if D_out(j) <= XL
                            D_out(j) = XL+0.001;
                        elseif D_out(j) >= XU
                            D_out(j) = XU-0.001;
                        end
                    end                
                end          
            %为下一次迭代做准备
            sys = D_out(1);
            i = 1;
            mg = mg +1;
            end
        end
        return;
      
    case 2,
        Uin = u;
    case {1,4,9},
        sys = [];
end
 
A85
相关文章
WK
|
1天前
|
算法
粒子群算法的优缺点分别是什么
粒子群优化(PSO)算法概念简单,易于编程实现,参数少,收敛速度快,全局搜索能力强,并行处理高效。然而,它也容易陷入局部最优,参数设置敏感,缺乏坚实的理论基础,且性能依赖初始种群分布,有时会出现早熟收敛。实际应用中需根据具体问题调整参数以最大化优势。
WK
10 2
WK
|
1天前
|
机器学习/深度学习 算法 数据挖掘
PSO算法的应用场景有哪些
粒子群优化算法(PSO)因其实现简单、高效灵活,在众多领域广泛应用。其主要场景包括:神经网络训练、工程设计、电力系统经济调度与配电网络重构、数据挖掘中的聚类与分类、控制工程中的参数整定、机器人路径规划、图像处理、生物信息学及物流配送和交通管理等。PSO能处理复杂优化问题,快速找到全局最优解或近似解,展现出强大的应用潜力。
WK
8 1
|
1天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
5天前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。
|
13天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
13天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
14天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
16天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。