镜像拉取节省 90% 以上,快手基于 Dragonfly 的超大规模分发实践

简介: 快手容器云技术团队携手阿里云、蚂蚁集团在龙蜥社区适配,优化落地解决方案。

1.png

01 挑战

快手容器云平台旨在为快手不断增长、不断变化和多样化的业务,提供基于容器化部署的超大规模基础设施服务。为了实现这一目标,快手工程师需要解决弹性、稳定性、效率和无服务器架构等挑战,在这些挑战中,镜像分发的稳定性和效率也是最棘手的问题之一。

解决方案

为了让快手容器云平台的镜像分发更加稳定和高效,快手容器云技术团队携手阿里云、蚂蚁集团在龙蜥社区适配,优化落地解决方案。事实证明,Dragonfly 及其子项目 Nydus 是最合适的解决方案,该方案能够与现有系统很好地兼容,在现有能力基础上平滑过渡,同时也为服务交付带来了大幅的效率提升。

效果

Dragonfly 上线后,整个集群通过 P2P 组建分发网,所有节点帮助中心化 Harbor 缓解网络带宽压力。Harbor 的网络带宽压力平均缓解 70% 以上,峰值压力缓解 80% 以上,镜像分发系统变得更加稳定、可靠、高效,系统能够同时支持更多数量的镜像并发拉取请求,尤其是在应对 Daemonset 部署和关键、大批量实例业务服务更新的场景中,高并发镜像拉取仓库不再是瓶颈。

使用项目

Dragonfly:https://github.com/dragonflyoss/Dragonfly2

Nydus:https://github.com/dragonflyoss/image-service

containerd:https://github.com/containerd/containerd

Harbor:https://github.com/goharbor/harbor

02 相关数据

峰值缓解 80% 以上 镜像拉取时间节省 90% 以上 POD 实例服务耗时节省 50%


03 为每月 10 亿用户提供稳定性和性能支持

“在快手,Dragonfly 有效解决了海量文件分发问题”

——吴宏斌 快手综合运营平台负责人

快手创建于 2011 年,是中国第一个短视频平台,每月为全球 10 亿用户提供服务,其中也有 1.8 亿多用户在海外,其全球足迹已迅速扩展至拉丁美洲、中东和东南亚。在快手,任何用户都可以通过短视频和直播来记录和分享他们的生活经历,展示他们的才华。快手与内容创作者、企业紧密合作,主要从事内容社区和社交平台的运营,提供直播服务、在线营销服务、电子商务、娱乐、在线知识共享和其他增值服务。随着快手业务的快速增长,数以万计的关键服务和中间件运行在快手容器云平台上,镜像分发系统的稳定性和效率变得越来越重要。


对于快手的镜像分发系统升级改造来说,最大的挑战不仅仅是镜像仓库峰值压力的缓解和镜像拉取加速,如何让服务分发无缝衔接平滑过渡,尽可能让业务无感、不受系统变化影响同样重要。快手容器云平台工程师通过调研发现,Nydus 与 Dragonfly 系统深度集成,同时也支持传统 OCI 镜像,能够以兼容友好的方式提供快速、稳定、安全、便捷的容器镜像访问,非常容易地就能适配容器云平台已有工作,实现业务从已有镜像使用方式平滑过渡到新镜像格式。平台唯一要做的就是将容器运行引擎从 Docker 切换到 containerd,因为 containerd 与 Dragonlfly 的集成体验更好。在快手工程师的努力下,大规模节点的容器引擎平稳切换轻而易举,containerd 和 Dragonfly 均已被快速全面采用。

稳定高效的镜像分发

对于稳定、高效的镜像分发,Dragonfly 给出了完美的答案。在快手,有许多重要的服务需要在短短几分钟内扩容到成千上万个实例,例如快手的 818 购物节或双 11 活动的业务扩容需求。这种缩放需要数千 GB 带宽才能直接从镜像仓库下载。在另外一些场景中,预测模型和搜索业务需要定期更新模型参数文件和索引文件来保证推荐效果和检索效果,这在技术上意味着必须立即将数百 GB 的文件分发到每个相关实例。


快手工程师在所有容器云主机部署了 Dragonfly 组件:Dfdaemon 和 Dfget,通过 P2P 算法拉取文件。同时,在每个 AZ 部署了独立的超级节点集群,为 Dfget 设计了 Schedule Server,选择合适的超级节点来避免跨 AZ 或者跨 Region 的流量。更重要的是,工程师基于 Dragonfly 独特的片管理 P2P 算法实现了数据流 P2P 传输,降低了磁盘负载。得益于 Dragonfly,数以万计的实例可以同时拉取镜像或下载文件,而不会增加时间成本和磁盘负载。

2.png

“先进的技术就是第一生产力,快手容器云平台拥抱 Dragonfly 和 Nydus 后,应用交付效率大幅提升,给业务创新带来了更多可能。”

——孙寅 快手容器云负责人

由于拉取镜像是容器生命周期中比较耗时的步骤之一,为了进一步加速镜像分发和服务启动,工程师们又继续启用了 Nydus 镜像懒加载项目。快手有许多服务有数千个 Pod 实例,其中一些有超过 20G 或更大的镜像,当这些服务升级或扩容时,巨大的镜像和启动时间会严重减慢服务启动。快手需要一种能够显著提高服务启动速度的解决方案,特别是因为某些服务将其训练模型放入镜像中,这对于服务启动来说可能是灾难性的。


由于快手在 Dragonfly 项目上的应用和实施,工程师们很早就了解到 Nydus 项目。Nydus 是一个强大的开源文件系统解决方案,可以为云原生工作负载,例如容器镜像,构建高效的镜像分发系统。

得益于 Nydus 全新的镜像设计,每个 Pod 可以在几秒钟内完成启动,这样可以大量节省服务部署实例的启动时间,让应用尽快为用户提供服务。对于每个集群节点,支持Nydus的工作并不复杂,通过容器引擎无损切换(指无需 POD 驱逐)、配置变更即可顺利完成。


在实践中,Harbor 作为快手容器云平台的全局镜像仓库中心,仍然扮演着非常重要的角色,具体来说,我们做了以下事情:

1.容器引擎从 Docker 无损切换到 containerd;

2.在镜像构建阶段支持使用 Nydus 标准构建镜像;

3.在集群节点间,使用 Dragonfly 的 P2P 技术支持镜像分发;

4.containerd通过配置Dragonfly 的 P2P 代理拉取镜像,并使用 Nydus 镜像启动容器。


当然,以上所有的变动,都继续兼容当前已有的 OCI 镜像格式以及系统已有功能。

3.png

综上所述,Dragonfly 和 Nydus 一起为快手容器云平台提供了处理镜像分发问题的最佳解决方案。数以万计的快手服务大大减少了部署时间,业务线研发工程师在更新服务时也更加轻松容易。


Dragonfly 和 Nydus 都是来自 CNCF 的优秀开源项目,更进一步说,快手也将继续对该项目进行更多投入,并与社区展开深入合作,使它变得更加强大和可持续。云原生技术是基础设施领域的一场革命,尤其是在弹性和无服务器方面,我们相信 Dragonfly 一定会在云原生生态中扮演重要角色。


相关链接:

云原生 SIG 主页:https://openanolis.cn/sig/cloud-native


参考资料

【1】https://www.cncf.io/case-studies/kuaishou-technology/

【2】d7y+nydus快手案例

【3】https://github.com/containerd/containerd

【4】https://github.com/dragonflyoss/Dragonfly2

【5】https://d7y.io/

【6】https://github.com/dragonflyoss/image-service

【7】https://nydus.dev/

【8】https://github.com/goharbor/harbor

—— 完 ——

加入龙蜥社群

加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】与你同在;加入钉钉群:扫描下方钉钉群二维码。

12.png

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
16天前
|
缓存 5G 开发者
【提效】docker镜像构建优化-提速10倍
本文主要记录了自己通过查阅相关资料,一步步排查问题,最后通过优化Docerfile文件将docker镜像构建从十几分钟降低到1分钟左右,效率提高了10倍左右。
|
存储 Dragonfly 缓存
带你读《2022龙蜥社区全景白皮书》——5.6.3 容器镜像大规模分发技术Nydus
带你读《2022龙蜥社区全景白皮书》——5.6.3 容器镜像大规模分发技术Nydus
178 6
|
人工智能 运维 Kubernetes
阿里云 Serverless 容器服务全面升级:新增组件全托管、AI 镜像秒级拉取能力
阿里云 Serverless 容器服务全面升级:新增组件全托管、AI 镜像秒级拉取能力
|
Dragonfly Cloud Native 应用服务中间件
如何在 Anolis 8 上构建基于 Nydus 和 Dragonfly 的镜像加速解决方案
Nydus+Dragonfly 组合减少容器启动过程中镜像的拉取时间,提升集群间的镜像分发效率。
如何在 Anolis 8 上构建基于 Nydus 和 Dragonfly 的镜像加速解决方案
|
存储 Dragonfly JSON
Nydus 在约苗平台的容器镜像加速实践
本文是来自向申同学的分享,介绍了其在 K8s 生产环境集群部署 Nydus 的相关实践。
Nydus 在约苗平台的容器镜像加速实践
|
Dragonfly Cloud Native 算法
10 亿月活用户下,快手基于 Dragonfly 的超大规模镜像分发实践
Dragonfly 和 Nydus 都是来自 CNCF 的优秀开源项目,更进一步说,快手也将继续对该项目进行更多投入,并与社区展开深入合作,使它变得更加强大和可持续。云原生技术是基础设施领域的一场革命,尤其是在弹性和无服务器方面,我们相信 Dragonfly 一定会在云原生生态中扮演重要角色。
10 亿月活用户下,快手基于 Dragonfly 的超大规模镜像分发实践
|
存储 运维 Kubernetes
开发者测评:相比 Harbor,我选择 ACR 的三点原因
本次活动是为了帮助更多开发者了解容器镜像服务 ACR 的功能、使用方式和产品体验,从而在不同应用场景下,更好地进行容器镜像管理方案的选型。不少开发者在活动中发表了他们在这个过程中的思考,以及选择阿里云容器镜像服务 ACR 的原因。
开发者测评:相比 Harbor,我选择 ACR 的三点原因
|
存储 Dragonfly 缓存
Dragonfly 基于 P2P 的文件和镜像分发系统
Dragonfly 是一款基于 P2P 的智能镜像和文件分发工具。它旨在提高大规模文件传输的效率和速率,最大限度地利用网络带宽。在应用分发、缓存分发、日志分发和镜像分发等领域被大规模使用。
Dragonfly 基于 P2P 的文件和镜像分发系统
|
运维 分布式计算 监控
直播预告 | 分布式云容器平台 ACK One 全面升级
2022 年 8 月 30 日 15:00,ACK One 分布式云容器平台技术负责人,庄宇将在直播间为大家分享 ACK One 的产品能力,以及近期在混合云和多集群管理领域的全面升级,主要包括:注册集群2.0,多集群服务,多集群监控,两地三中心应用容灾方案。快点击下方预约按钮,锁定本场直播吧!
直播预告 | 分布式云容器平台 ACK One 全面升级
|
缓存 Cloud Native Linux
下一篇
无影云桌面