机器学习中的数学原理——二分类问题

简介: 机器学习中的数学原理——二分类问题

一、什么是二分类

二分类问题就是简单的“是否”、“有无”问题,分类问题是机器学习中非常重要的一个课题。现实生活中有很多实际的二分类场景,如对于借贷问题,我们会根据某个人的收入、存款、职业、年龄等因素进行分析,判断是否进行借贷;对于一封邮件,根据邮件内容判断该邮件是否属于垃圾邮件

二、案例分析

我们之前的学习都是围绕回归来进行的,今天我们学习一个全新的概念,分类问题。我们从最简的二分类开始学习,简单来说就是根据目标的某些特性将其分为两类。我们以图像分类举例,我们不去考虑图像本身的内容,只根据尺寸把它分类为纵向图像和横向图像 :

那么上面左侧的图片就是纵向的图片,右侧的图片就是横向的图片。我们以表格的形式呈现:

x 轴图像的宽y 轴图像的高,那么把上面的数据展现在图上就是下面这样的,其中白色的点是纵向图像,黑色的点是横向图像:

以此类推,我们可以在表上和图上添加更多的数据:

现在要做的事就是只用一条线将图中白色的点和黑色的点分开:

我们可以这样画,那么我们二分类的任务就完成了,是不是很简单,在直线上方出现的点,我们都认为是纵向,黑色都认为是横向,达到了分类的目的

三、总结

上述例子,我们以图像横纵的分类详细阐述了二分类。二分类的目的就是找到这条线,只要找到这条线,就可以根据点在线的哪一边来判断图像是横向还是纵向的了。

当然,这只是一种很理想的状态,真实的情况比这要复杂的多,分割函数可能会很复杂,这是我们之后要研究的问题,在这里就不进行阐述。


相关文章
|
24天前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】机器学习的基本概念、算法的工作原理、实际应用案例
机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下从数据中学习并改进其性能。机器学习的目标是让计算机自动学习模式和规律,从而能够对未知数据做出预测或决策。
28 2
|
24天前
|
机器学习/深度学习 人工智能 算法
【人工智能】机器学习、分类问题和逻辑回归的基本概念、步骤、特点以及多分类问题的处理方法
机器学习是人工智能的一个核心分支,它专注于开发算法,使计算机系统能够自动地从数据中学习并改进其性能,而无需进行明确的编程。这些算法能够识别数据中的模式,并利用这些模式来做出预测或决策。机器学习的主要应用领域包括自然语言处理、计算机视觉、推荐系统、金融预测、医疗诊断等。
19 1
|
3天前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的基本原理与Python代码实践
【9月更文挑战第6天】本文深入探讨了人工智能领域中的机器学习技术,旨在通过简明的语言和实际的编码示例,为初学者提供一条清晰的学习路径。文章不仅阐述了机器学习的基本概念、主要算法及其应用场景,还通过Python语言展示了如何实现一个简单的线性回归模型。此外,本文还讨论了机器学习面临的挑战和未来发展趋势,以期激发读者对这一前沿技术的兴趣和思考。
|
28天前
|
机器学习/深度学习 人工智能 关系型数据库
【机器学习】Qwen2大模型原理、训练及推理部署实战
【机器学习】Qwen2大模型原理、训练及推理部署实战
214 0
【机器学习】Qwen2大模型原理、训练及推理部署实战
|
1月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
83 2
|
1月前
|
机器学习/深度学习 算法
【机器学习】简单解释贝叶斯公式和朴素贝叶斯分类?(面试回答)
简要解释了贝叶斯公式及其在朴素贝叶斯分类算法中的应用,包括算法的基本原理和步骤。
51 1
|
19天前
|
机器学习/深度学习
如何用贝叶斯方法来解决机器学习中的分类问题?
如何用贝叶斯方法来解决机器学习中的分类问题?
|
28天前
|
机器学习/深度学习 数据采集 物联网
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
55 0
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
84 0
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
22 0

热门文章

最新文章

下一篇
DDNS