openGauss并行查询测试(一)

简介: openGauss并行查询测试

一、执行计划

1. SQL执行计划概述

SQL执行计划是一个节点树,显示MogDB执行一条SQL语句时执行的详细步骤。每一个步骤为一个数据库运算符。

使用EXPLAIN命令可以查看优化器为每个查询生成的具体执行计划。EXPLAIN给每个执行节点都输出一行,显示基本的节点类型和优化器为执行这个节点预计的开销值。如图1所示。

SQL执行计划示例

  • 最底层节点是表扫描节点,它扫描表并返回原始数据行。不同的表访问模式有不同的扫描节点类型: 顺序扫描、索引扫描等。最底层节点的扫描对象也可能是非表行数据(不是直接从表中读取的数据),如VALUES子句和返回行集的函数,它们有自己的扫描节点类型。
  • 如果查询需要连接、聚集、排序、或者对原始行做其它操作,那么就会在扫描节点之上添加其它节点。 并且这些操作通常都有多种方法,因此在这些位置也有可能出现不同的执行节点类型。
  • 第一行(最上层节点)是执行计划总执行开销的预计。这个数值就是优化器试图最小化的数值。

2. 执行计划显示信息

除了设置不同的执行计划显示格式外,还可以通过不同的EXPLAIN用法,显示不同详细程度的执行计划信息。常见有如下几种:

  • EXPLAIN statement:只生成执行计划,不实际执行。其中statement代表SQL语句。
  • EXPLAIN ANALYZE statement:生成执行计划,进行执行,并显示执行的概要信息。显示中加入了实际的运行时间统计,包括在每个规划节点内部花掉的总时间(以毫秒计)和它实际返回的行数。
  • EXPLAIN PERFORMANCE statement:生成执行计划,进行执行,并显示执行期间的全部信息。
    为了测量运行时在执行计划中每个节点的开销,EXPLAIN ANALYZE或EXPLAIN PERFORMANCE会在当前查询执行上增加性能分析的开销。在一个查询上运行EXPLAIN ANALYZE或EXPLAIN PERFORMANCE有时会比普通查询明显的花费更多的时间。超支的数量依赖于查询的本质和使用的平台。

因此,当定位SQL运行慢问题时,如果SQL长时间运行未结束,建议通过EXPLAIN命令查看执行计划,进行初步定位。如果SQL可以运行出来,则推荐使用EXPLAIN ANALYZE或EXPLAIN PERFORMANCE查看执行计划及其实际的运行信息,以便更精准地定位问题原因。

EXPLAIN PERFORMANCE轻量化执行方式与EXPLAIN PERFORMANCE保持一致,在原来的基础上减少了性能分析的时间,执行时间与SQL执行时间的差异显著减少

3. 详解

如SQL执行计划概述节中所说,EXPLAIN会显示执行计划,但并不会实际执行SQL语句。EXPLAIN ANALYZE和EXPLAIN PERFORMANCE两者都会实际执行SQL语句并返回执行信息。在这一节将详细解释执行计划及执行信息。

4. 执行计划

以如下SQL语句为例:

SELECT * FROM t1, t2 WHERE t1.c1 = t2.c2;

执行EXPLAIN的输出为:

执行计划层级解读(纵向):

  • 第一层: Seq Scan on t2

表扫描算子,用Seq Scan的方式扫描表t2。这一层的作用是把表t2的数据从buffer或者磁盘上读上来输送给上层节点参与计算。

  • 第二层: Hash

Hash算子,作用是把下层计算输送上来的算子计算hash值,为后续hash join操作做数据准备。

  • 第三层: Seq Scan on t1

表扫描算子,用Seq Scan的方式扫描表t1。这一层的作用是把表t1的数据从buffer或者磁盘上读上来输送给上层节点参与hash join计算。

  • 第四层: Hash Join

join算子,主要作用是将t1表和t2表的数据通过hash join的方式连接,并输出结果数据。

执行计划中的关键字说明:

  • 表访问方式
  • Seq Scan

全表顺序扫描。

  • Index Scan

优化器决定使用两步的规划: 最底层的规划节点访问一个索引,找出匹配索引条件的行的位置,然后上层规划节点真实地从表中抓取出那些行。独立地抓取数据行比顺序地读取它们的开销高很多,但是因为并非所有表的页面都被访问了,这么做实际上仍然比一次顺序扫描开销要少。使用两层规划的原因是,上层规划节点在读取索引标识出来的行位置之前,会先将它们按照物理位置排序,这样可以最小化独立抓取的开销。

如果在WHERE里面使用的好几个字段上都有索引,那么优化器可能会使用索引的AND或OR的组合。但是这么做要求访问两个索引,因此与只使用一个索引,而把另外一个条件只当作过滤器相比,这个方法未必是更优。

  • 索引扫描可以分为以下几类,他们之间的差异在于索引的排序机制。
  • Bitmap Index Scan

使用位图索引抓取数据页。

  • Index Scan using index_name

使用简单索引搜索,该方式表的数据行是以索引顺序抓取的,这样就令读取它们的开销更大,但是这里的行少得可怜,因此对行位置的额外排序并不值得。最常见的就是看到这种规划类型只抓取一行,以及那些要求ORDER BY条件匹配索引顺序的查询。因为那时候没有多余的排序步骤是必要的以满足ORDER BY。

  • 表连接方式
  • Nested Loop

嵌套循环,适用于被连接的数据子集较小的查询。在嵌套循环中,外表驱动内表,外表返回的每一行都要在内表中检索找到它匹配的行,因此整个查询返回的结果集不能太大(不能大于10000),要把返回子集较小的表作为外表,而且在内表的连接字段上建议要有索引。

  • (Sonic) Hash Join

哈希连接,适用于数据量大的表的连接方式。优化器使用两个表中较小的表,利用连接键在内存中建立hash表,然后扫描较大的表并探测散列,找到与散列匹配的行。Sonic和非Sonic的Hash Join的区别在于所使用hash表结构不同,不影响执行的结果集。

  • Merge Join

归并连接,通常情况下执行性能差于哈希连接。如果源数据已经被排序过,在执行融合连接时,并不需要再排序,此时融合连接的性能优于哈希连接。

  • 运算符
  • sort

对结果集进行排序。

  • filter

EXPLAIN输出显示WHERE子句当作一个"filter"条件附属于顺序扫描计划节点。这意味着规划节点为它扫描的每一行检查该条件,并且只输出符合条件的行。预计的输出行数降低了,因为有WHERE子句。不过,扫描仍将必须访问所有 10000 行,因此开销没有降低;实际上它还增加了一些(确切的说,通过10000 * cpu_operator_cost)以反映检查WHERE条件的额外CPU时间。

  • LIMIT

LIMIT限定了执行结果的输出记录数。如果增加了LIMIT,那么不是所有的行都会被检索到。

执行信息

select sum(t2.c1) from t1,t2 where t1.c1=t2.c2 group by t1.c2;

执行EXPLAIN PERFORMANCE输出为:

二、 SMP并行执行

1. 特性简介

MogDB的SMP并行技术是一种利用计算机多核CPU架构来实现多线程并行计算,以充分利用CPU资源来提高查询性能的技术。

2. 特性描述

在复杂查询场景中,单个查询的执行较长,系统并发度低,通过SMP并行执行技术实现算子级的并行,能够有效减少查询执行时间,提升查询性能及资源利用率。SMP并行技术的整体实现思想是对于能够并行的查询算子,将数据分片,启动若干个工作线程分别计算,最后将结果汇总,返回前端。SMP并行执行增加数据交互算子Stream,实现多个工作线程之间的数据交互,确保查询的正确性,完成整体的查询。

SMP特性通过算子并行来提升性能,同时会占用更多的系统资源,包括CPU、内存、I/O等等。本质上SMP是一种以资源换取时间的方式,在合适的场景以及资源充足的情况下,能够起到较好的性能提升效果;但是如果在不合适的场景下,或者资源不足的情况下,反而可能引起性能的劣化。SMP特性适用于分析类查询场景,这类场景的特点是单个查询时间较长,业务并发度低。通过SMP并行技术能够降低查询时延,提高系统吞吐性能。然而在事务类大并发业务场景下,由于单个查询本身的时延很短,使用多线程并行技术反而会增加查询时延,降低系统吞吐性能。

3. 适用场景

  • 支持并行的算子:计划中存在以下算子支持并行。
  • Scan:支持行存普通表和行存分区表顺序扫描 、列存普通表和列存分区表顺序扫描。
  • Join:HashJoin、NestLoop
  • Agg:HashAgg、SortAgg、PlainAgg、WindowAgg(只支持partition by,不支持order by)
  • Stream:Local Redistribute、Local Broadcast
  • 其他:Result、Subqueryscan、Unique、Material、Setop、Append、VectoRow。
  • SMP特有算子:为了实现并行,新增了并行线程间的数据交换Stream算子供SMP特性使用。这些新增的算子可以看做Stream算子的子类。
  • Local Gather:实现实例内部并行线程的数据汇总。
  • Local Redistribute:在实例内部各线程之间,按照分布键进行数据重分布。
  • Local Broadcast:将数据广播到实例内部的每个线程。
  • Local RoundRobin:在实例内部各线程之间实现数据轮询分发。
  • 示例说明,以TPCH Q1的并行计划为例。

在这个计划中,实现了Scan以及HashAgg算子的并行,并新增了Local Gather数据交换算子。其中3号算子为Local Gather算子,上面标有的“dop: 1/4”表明该算子的发送端线程的并行度为4,而接受端线程的并行度为1,即下层的4号HashAggregate算子按照4并行度执行,而上层的1~2号算子按照串行执行,3号算子实现了实例内并行线程的数据汇总。

通过计划Stream算子上表明的dop信息即可看出各个算子的并行情况。

4. 非适用场景

  • 索引扫描不支持并行执行。
  • MergeJoin不支持并行执行。
  • WindowAgg order by不支持并行执行。
  • cursor不支持并行执行。
  • 存储过程和函数内的查询不支持并行执行。
  • 不支持子查询subplan和initplan的并行,以及包含子查询的算子的并行。
  • 查询语句中带有median操作的查询不支持并行执行。
  • 带全局临时表的查询不支持并行执行。
  • 物化视图的更新不支持并行执行。

5. 资源对SMP性能的影响

SMP架构是一种利用富余资源来换取时间的方案,计划并行之后必定会引起资源消耗的增加,包括CPU、内存、I/O等资源的消耗都会出现明显的增长,而且随着并行度的增大,资源消耗也随之增大。当上述资源成为瓶颈的情况下,SMP无法提升性能,反而可能导致集群整体性能的劣化。下面对各种资源对SMP性能的影响情况分别进行说明。

  • CPU资源

在一般客户场景中,系统CPU利用率不高的情况下,利用SMP并行架构能够更充分地利用系统CPU资源,提升系统性能。但当数据库服务器的CPU核数较少,CPU利用率已经比较高的情况下,如果打开SMP并行,不仅性能提升不明显,反而可能因为多线程间的资源竞争而导致性能劣化。

  • 内存资源

查询并行后会导致内存使用量的增长,但每个算子使用内存上限仍受到work_mem等参数的限制。假设work_mem为4GB,并行度为2,那么每个并行线程所分到的内存上限为2GB。在work_mem较小或者系统内存不充裕的情况下,使用SMP并行后,可能出现数据下盘,导致查询性能劣化的问题。

  • I/O资源

要实现并行扫描必定会增加I/O的资源消耗,因此只有在I/O资源充足的情况下,并行扫描才能够提高扫描性能。

目录
相关文章
|
17天前
|
Web App开发 数据库 索引
Playwright 测试并行性
Playwright 测试并行性
18 0
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
41 4
|
1月前
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
35 2
|
3月前
|
测试技术 API 开发者
Python 魔法:打造你的第一个天气查询小工具自动化测试框架的构建与实践
【8月更文挑战第31天】在这篇文章中,我们将一起踏上编程的奇妙旅程。想象一下,只需几行代码,就能让计算机告诉你明天是否要带伞。是的,你没有听错,我们将用Python这把钥匙,解锁天气预报的秘密。不论你是编程新手还是想拓展技能的老手,这篇文章都会为你带来新的视角和灵感。所以,拿起你的键盘,让我们一起创造属于自己的天气小工具吧!
|
3月前
|
JavaScript 前端开发 应用服务中间件
【qkl】JavaScript连接web3钱包,实现测试网络中的 Sepolia ETH余额查询、转账功能
【区块链】JavaScript连接web3钱包,实现测试网络中的 Sepolia ETH余额查询、转账功能
|
6月前
|
测试技术
Appium 并行测试多个设备
Appium 并行测试多个设备
158 0
|
自然语言处理 搜索推荐 Java
【网安AIGC专题10.25】9 LIBRO方法(ICSE2023顶会自动化测试生成):提示工程+查询LLM+选择、排序、后处理(测试用例函数放入对应测试类中,并解决执行该测试用例所需的依赖)
【网安AIGC专题10.25】9 LIBRO方法(ICSE2023顶会自动化测试生成):提示工程+查询LLM+选择、排序、后处理(测试用例函数放入对应测试类中,并解决执行该测试用例所需的依赖)
266 0
|
关系型数据库 MySQL 测试技术
软件测试|MySQL BETWEEN AND:范围查询详解
软件测试|MySQL BETWEEN AND:范围查询详解
|
9天前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
39 3
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
59 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)