m基于MSOPSO多策略粒子群算法的目标优化matlab仿真

简介: m基于MSOPSO多策略粒子群算法的目标优化matlab仿真

1.算法描述

    粒子群优化算法(particle swarm optimization,PSO)是一种源于对鸟群捕食行为的研究而发明的进化计算技术,最先由Eberhart 博士和Kennedy 博士提出,其主要想法是:将每个优化问题的解看作是搜索空间中的一个没有体积的粒子,在搜索空间中以一定的速度飞行,速度的大小与方向根据它本身和同伴的飞行经验来动态调整。

   粒子Xi 在第t 次进行迭代的速度与位置运算公式为:

1.png

   当进化过程中产生新个体X 时,同时对该个体的反向位置Xi 进行考察,综合比较产生一个更优的个体。这样,个体Xi与最优位置之间的距离就会缩小,从而提高算法的效率。

   在粒子群算法优化过程的初期,大数值的权重系数可以增强全局搜索能力;在优化过程的后期,小数值的迭代权重将有利于局部搜索;而常数权重无法调节这两方面的搜索能力,所以本文通过引入随时间变化的权重系数来平衡全局搜索和局部搜索能力。

  MSOPSO 算法流程图:

2.png

2.matlab算法仿真效果
matlab2022a仿真结果如下:

3.png
4.png
5.png

3.MATLAB核心程序

y_best    = zeros(1,Pop);
 
Smax      = 100;
S         = 0;
%粒子初始化
for i=1:Pop
    %N
    x1(1,i)         = rand(1)*(max1-min1)+min1;
    x_best1(1,i)    = rand(1)*(max1-min1)+min1;
    %I
    y1(1,i)         = rand(1)*(max2-min2)+min2;
    y_best1(1,i)    = rand(1)*(max2-min2)+min2;
 
    %反向学习初始化
    %N
    x_(1,i)        = (max1+min1)-x(1,i);
    x_best_(1,i)   = (max1+min1)-x_best(1,i);
    %I
    y_(1,i)        = (max2+min2)-y(1,i);
    y_best_(1,i)   = (max2+min2)-y_best(1,i);
    
    
    [BsJ1,x(1,i),y(1,i)] = func_fitness(x1(1,i),y1(1,i)); 
    [BsJ2,x(1,i),y(1,i)] = func_fitness(x_(1,i),y_(1,i));    
    
    if BsJ1 < BsJ2
        %N
        x(1,i)         = x1(1,i);
        x_best(1,i)    = x_best1(1,i);
        %I
        y(1,i)         = y1(1,i);
        y_best(1,i)    = y_best1(1,i);
        BsJi(i)        = BsJ1;
    else
        %N
        x(1,i)         = x_(1,i);
        x_best(1,i)    = x_best_(1,i);
        %I
        y(1,i)         = y_(1,i);
        y_best(1,i)    = y_best_(1,i);
        BsJi(i)        = BsJ2;
    end
 
    va(1,i)   =(vmax-vmin)*rand(1)+vmin;
    vb(1,i)   =(vmax-vmin)*rand(1)+vmin;
end
[minJi,index]= min(BsJi);
 
Tx_best    = 500;
Ty_best    = 500;
for t=1:tmax
    t
    time(t) = t;
    w       = wmax-t*(wmax-wmin)/tmax;
    c2      = c2max-t*(c2max-c2min)/tmax;
    for i=1:Pop
        if t > 1
            %N
            x(1,i)         = x_(1,i);
            x_best(1,i)    = x_best_(1,i);
            %I
            y(1,i)         = y_(1,i);
            y_best(1,i)    = y_best_(1,i);
        end
        %N
        %速度1设置
        va(1,i) = w*va(1,i) + c1*rand(1)*(x_best(1,i)-x(1,i)) + c2*rand(1)*(Tx_best-x(1,i));
        %更新
        x(1,i)  = x(1,i) + va(1,i);
        %变量1的限制
        if x(1,i) >= max1
           x(1,i) = max1;
        end
        if x(1,i) <= min1
           x(1,i) = min1;
        end                             
 
        %I
        %速度2设置
        vb(1,i) = w*vb(1,i) + c1*rand(1)*(y_best(1,i)-y(1,i)) + c2*rand(1)*(Ty_best-y(1,i));
        %更新
        y(1,i)  = y(1,i) + vb(1,i);
        %变量2的限制
        if y(1,i) >= max2
           y(1,i) = max2;
        end
        if y(1,i) <= min2
           y(1,i) = min2;
        end                           
 
        [BsJ,x(1,i),y(1,i)] = func_fitness(x(1,i),y(1,i));  
        
        if BsJ<BsJi(i)
           BsJi(i)        = BsJ;
           x_best(1,i)    = x(1,i);
           y_best(1,i)    = y(1,i);
        end
        if BsJi(i)<minJi
           minJi      = BsJi(i);
           Tx_best    = x(1,i);
           Ty_best    = y(1,i);
        end
        %反向
        %反向
        %反向学习
        %N
        x_(1,i)         = (max1+min1)-x(1,i);
        x_best_(1,i)    = (max1+min1)-x_best(1,i);
        %I
        y_(1,i)         = (max2+min2)-y(1,i);
        y_best_(1,i)    = (max2+min2)-y_best(1,i);
        
        %计算反向点和当前点的适应度
        [BsJa,xa(1,i),ya(1,i)] = func_fitness(x(1,i),y(1,i));
        [BsJb,xb(1,i),yb(1,i)] = func_fitness(x_(1,i),y_(1,i));
        
        %选择较优点
        if BsJa <= BsJb
            x(1,i)         = x(1,i);
            x_best(1,i)    = x_best(1,i);
            %I
            y(1,i)         = y(1,i);
            y_best(1,i)    = y_best(1,i);
        else
            x(1,i)         = x_(1,i);
            x_best(1,i)    = x_best_(1,i);
            %I
            y(1,i)         = y_(1,i);
            y_best(1,i)    = y_best_(1,i);
        end
        [BsJ,x(1,i),y(1,i)] = func_fitness(x(1,i),y(1,i));
 
        
        if BsJ<BsJi(i)
           BsJi(i)        = BsJ;
           x_best(1,i)    = x(1,i);
           y_best(1,i)    = y(1,i);
        end
        if BsJi(i)<minJi
           minJi      = BsJi(i);
           Tx_best    = x(1,i);
           Ty_best    = y(1,i);
        end 
    end
    %判断全局最优解是否有更新
    Jibest(t) = minJi;
    
    if t > 1
       if abs(Jibest(t) - Jibest(t-1)) < 0.0001%认为没有更新
          S = S + 1; 
          if S >= Smax%多开端策略,种群重新初始化,用于下一次迭代使用
             for i=1:Pop
                %N
                x(1,i)         = rand(1)*(max1-min1)+min1;
                x_best(1,i)    = rand(1)*(max1-min1)+min1;
                %I
                y(1,i)         = rand(1)*(max2-min2)+min2;
                y_best(1,i)    = rand(1)*(max2-min2)+min2;
 
                %反向学习初始化
                %N
                x_(1,i)        = (max1+min1)-x(1,i);
                x_best_(1,i)   = (max1+min1)-x_best(1,i);
                %I
                y_(1,i)        = (max2+min2)-y(1,i);
                y_best_(1,i)   = (max2+min2)-y_best(1,i);
             end
          S=0;   
          end
       end
    end
 
end
02_042m
相关文章
|
15小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
7天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
32 3
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
7天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
18天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。