实战案例!Python批量识别银行卡号码并且写入Excel,小白也可以轻松使用~

简介: 简单,学起来

大家好,这里是程序员晚枫,

今天我们继续学习Python自动化办公:每次有新员工入职,都要收集大量的工资卡信息,并且生成Excel文档,能不能用Python准确、快速地解决呢?

今天我们就来学习一下,如何用1行代码,自动识别银行卡信息并且自动生成Excel文件~

第一步:识别一张银行卡

识别银行卡的代码最简单,只需要1行腾讯云AI的第三方库potencent的代码,如下所示。左右滑动,查看全部。👇

# pip install potencent
import potencent

# 可以填写本地图片的地址:img_path,也可以填写在线图片的地址:img_url
# 如果2个都填,则只用在线图片
res = potencent.ocr.BankCardOCR(
            img_path=r'C:\Users\程序员晚枫的文件夹\银行卡图片',
            img_url='https://python-office-1300615378.cos.ap-chongqing.myqcloud.com/2-free-group.jpg',
            configPath=r'配置文件的信息,可以不填,默认是同级目录下的potencent-config.toml')

print(res)

识别后的返回结果,几乎涵盖所有银行卡上肉眼可见的内容。👇

{
  "CardNo": "621700888888888889",
  "BankInfo": "建设银行(01050000)",
  "ValidDate": "08/2026",
  "CardType": "借记卡",
  "CardName": "龙卡通",
  "RequestId": "86b70007-3ef5-4b7e-8685-556b0a7df1c9"
}

支持对中国大陆主流银行卡正反面关键字段的检测与识别,包括卡号、卡类型、卡名字、银行信息、有效期。支持竖排异形卡识别、多角度旋转图片识别。支持对复印件、翻拍件、边框遮挡的银行卡进行告警,可应用于各种银行卡信息有效性校验场景,如金融行业身份认证、第三方支付绑卡等场景。

以上代码中,关于potencent-config.toml的配置方法,可以参考昨天视频的讲解👇

第二步:写入Excel

想把上面这个代码用来识别大量银行卡信息,并且将识别后的返回数据,全部写入Excel文件。

代码如下👇。

import os
from os.path import join
import pandas as pd

# home_path = "你存放大量银行卡图片的位置"
home_path = r"C:\Users\Lenovo\Desktop\temp\test\card"
res_df = pd.DataFrame()
for (root, dirs, files) in os.walk(home_path):
    for file in files:
        single_res = potencent.ocr.BankCardOCR(img_path=join(root, file))
        single_res = json.loads(single_res.to_json_string())
        line_df = pd.DataFrame(single_res, index=[0])
        print(line_df)
        res_df = res_df.append(other=line_df)
print(res_df)
res_df.to_excel(r"./银行卡信息(程序员晚枫).xlsx")

运行后的结果如下,会在同级目录下,生成一个Excel文件

第三步:优化思路

以上代码还可以进一步优化,例如:

  • 路径处理改为Path方法,适配更多的平台
  • 变量名称更简洁
  • index改为序号

但优化的前提是程序能运行成功,赶紧去跑起来吧~


大家在阅读本文和使用代码中有任何问题,欢迎在评论区进行交流~

相关文章
|
1月前
|
人工智能 Java Linux
Python高效实现Excel转PDF:无Office依赖的轻量化方案
本文介绍无Office依赖的Python方案,利用Spire.XLS、python-office、Aspose.Cells等库实现Excel与PDF高效互转。支持跨平台部署、批量处理、格式精准控制,适用于服务器环境及自动化办公场景,提升转换效率与系统稳定性。
245 7
|
1月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
317 0
|
4月前
|
开发工具 Python
使用Python和OpenAPI将云上的安全组规则填写入Excel
本文介绍如何通过Python脚本自动化获取阿里云安全组及其规则信息,并将结果导出为Excel表格。相比CLI命令行方式,Python实现更高效、便捷,适用于需要批量处理和交付的场景。
使用Python和OpenAPI将云上的安全组规则填写入Excel
|
11月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
1976 10
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
278 2
|
10月前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
9月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
750 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
599 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
Python
Python 自动化操作 Excel - 02 - xlwt
Python 自动化操作 Excel - 02 - xlwt
117 14

推荐镜像

更多