多维时序 | MATLAB实现SSA-KELM和KELM麻雀算法优化核极限学习机多输入单输出时间序列预测

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 多维时序 | MATLAB实现SSA-KELM和KELM麻雀算法优化核极限学习机多输入单输出时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

风电功率预测能为电网规划和运行提供重要依据,传统预测方法多为点预测,其结果一般有不同程度的误差,区间预测方法能有效描述风电输出功率的不确定性因而逐步受到重视。针对短期风电功率概率区间预测问题,提出一种基于麻雀优化的核极限学习机(SSA-KELM)模型,用于风电功率区间预测。通过核极限学习机(KELM)建立预测模型,采用麻雀算法对KELM的输出权值进行优化,寻找最优预测区间上下限,充分利用了KELM学习速度快、泛化能力强的优点,实现了对风电功率的快速区间预测。通过与KELM模型对比分析风电场在不同置信水平下的概率预测结果,发现SSA-KELM模型的预测精度更高,速度更快,能够为风电功率区间预测及风电并网安全稳定运行提供决策支持。

⛄ 部分代码

function [Convergence_curve,bestX]=SSA(N, dim, ub, lb,M,hiddennum_best, inputn, outputn, output_train, inputn_test ,outputps, output_test)

P_percent = 0.2;    % 发现者的种群规模占总种群规模的百分比

pNum = round(N*P_percent);    % 发现者数量20%

SD = pNum/2;      % 警戒者数量10%

ST = 0.8;           % 安全阈值

% 初始化

X = initialization(N, dim, ub, lb);

for i = 1:N

%     X(i, :) = lb + (ub - lb) .* rand(1, dim);

   fitness1(i) = fitness(X(i, :),hiddennum_best, inputn, outputn, output_train, inputn_test ,outputps, output_test);

end

pFit = fitness1;

pX = X;                            % 与pFit相对应的个体最佳位置

[fMin, bestI] = min(fitness1);      % fMin表示全局最优解

bestX = X(bestI, :);             % bestX表示全局最优位置

%% 开始进化

Convergence_curve = ones(M,1);  % 初始化每次迭代得到的最佳的适应度


%% 迭代寻优

for t = 1 : M      

   [~, sortIndex] = sort(pFit);            % 排序    

   [fmax, B] = max(pFit);

   worst = X(B, :);    

   %% 发现者位置更新

   r2 = rand(1);

   if r2 < ST

       for i = 1:pNum      % Equation (3)

           r1 = rand(1);

           X(sortIndex(i), :) = pX(sortIndex(i), :)*exp(-(i)/(r1*M));

           X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

           fitness1(sortIndex(i)) = fitness(X(sortIndex(i), :),hiddennum_best, inputn, outputn, output_train, inputn_test ,outputps, output_test);

       end

   else

       for i = 1:pNum

           X(sortIndex(i), :) = pX(sortIndex(i), :)+randn(1)*ones(1, dim);

           X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

           fitness1(sortIndex(i)) = fitness(X(sortIndex(i), :),hiddennum_best, inputn, outputn, output_train, inputn_test ,outputps, output_test);

       end

   end

   

   [~, bestII] = min(fitness1);

   bestXX = X(bestII, :);

   

   %% 跟随者位置更新

   for i = (pNum+1):N                     % Equation (4)

       A = floor(rand(1, dim)*2)*2-1;

       if i > N/2

           X(sortIndex(i), :) = randn(1)*exp((worst-pX(sortIndex(i), :))/(i)^2);

       else

           X(sortIndex(i), :) = bestXX+(abs((pX(sortIndex(i), :)-bestXX)))*(A'*(A*A')^(-1))*ones(1, dim);

       end

       X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

       fitness1(sortIndex(i)) = fitness(X(sortIndex(i), :),hiddennum_best, inputn, outputn, output_train, inputn_test ,outputps, output_test);

   end

   

   %% 警戒者位置更新

   c = randperm(numel(sortIndex));

   b = sortIndex(c(1:SD));

   for j = 1:length(b)      % Equation (5)

       if pFit(sortIndex(b(j))) > fMin

           X(sortIndex(b(j)), :) = bestX+(randn(1, dim)).*(abs((pX(sortIndex(b(j)), :) -bestX)));

       else

           X(sortIndex(b(j)), :) = pX(sortIndex(b(j)), :)+(2*rand(1)-1)*(abs(pX(sortIndex(b(j)), :)-worst))/(pFit(sortIndex(b(j)))-fmax+1e-50);

       end

       X(sortIndex(b(j)), :) = Bounds(X(sortIndex(b(j)), :), lb, ub);

       fitness1(sortIndex(b(j))) = fitness(X(sortIndex(b(j)), :),hiddennum_best, inputn, outputn, output_train, inputn_test ,outputps, output_test);

   end

   

   for i = 1:N

       % 更新个体最优

       if fitness1(i) < pFit(i)

           pFit(i) = fitness1(i);

           pX(i, :) = X(i, :);

       end

       % 更新全局最优

       if pFit(i) < fMin

           fMin = pFit(i);

           bestX = pX(i, :);

       end

   end

   Convergence_curve(t) = fMin;

   

   disp(['SSA: At iteration ', num2str(t), ' ,the best fitness is ', num2str(fMin)]);

end

⛄ 运行结果

⛄ 参考文献

[1]李军, 李大超. 基于优化核极限学习机的风电功率时间序列预测[J]. 物理学报, 2016(13):10.

[2]呼梦颖, 杨霈轶, 段建东, et al. 基于麻雀搜索算法优化核极限学习机的风电功率预测方法:, CN114065610A[P]. 2022.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
9天前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
20天前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
116 12
|
26天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
160 14
|
9天前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
|
9天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
|
2月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
|
2月前
|
存储 算法 安全
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)

热门文章

最新文章

下一篇
开通oss服务