m扩频通信系统在瑞利信道中的误码率性能matlab仿真

简介: m扩频通信系统在瑞利信道中的误码率性能matlab仿真

1.算法描述
本课题,我们主要涉及到两个理论要点,第一个是瑞利衰落条件,第二个是扩频通信。下面分别对这两个理论进行介绍:

   第一个是瑞利衰落条件:

   第二个是扩频通信:

我们从main.m这个主函数的各个模块进行说明:

    整个系统按照如下的流程仿真。

模块一:产生m序列;

1.png

这个部分是产生扩频需要的伪随机序列,对应的matlab函数为:func_Mseq.m

   然后如何产生m序列的,请单独再去看这个函数中的中文注释。

步骤二:产生随机信号,进行调制:

2.png

这里调制函数对应的程序为:func_Mod.m

这里,我们使用的是QPSK调制过程,具体见这个函数的代码注释;

步骤三:对调制后的信息进行扩频

T3.png

这里扩频对应的程序为: func_spread.m,具体见这个函数的代码注释;

步骤四:对扩频后的信号进行滤波
4.png

滤波的步骤分为采样和滤波,具体见上述两个函数的代码注释。

func_samples.m

func_filter2.m

步骤五:瑞利信道的设计

5.png

瑞利信道函数func_fade.m

步骤六:降采样,滤波

6.png

这里也是使用一个滤波函数,原理和上面的滤波函数相同。

步骤七:解扩

7.png

对应的函数为:func_despread.m具体过程见代码注释

步骤八:解调

8.png

对应的函数为:func_Demod.m具体过程见代码注释

2.matlab算法仿真效果
matlab2022a仿真结果如下:

9.png
10.png

3.MATLAB核心程序

Is_Rayleigh  = 1;
 
%符号率
Sym_Rate     = 0.5e6;   
%调制
Mod_order    = 2;       
%比特率 
Bit_Rate     = Sym_Rate*Mod_order;    
%符号数
Sim_Num      = 100;               
SNR          = [-2:1:8];     
%滤波阶数
Filter_Order = 15;   
Samples      = 4;          
%滚降
Alpha        = 0.5;            
Filter1      = func_filter(Filter_Order,Samples,Sym_Rate,Alpha,1);                         
Filter0      = func_filter(Filter_Order,Samples,Sym_Rate,Alpha,0);                        
%扩频码初值
UE_num         = 1;               
morder         = 3;                
register1_coff = [1,3];            
register2_coff = [2,3];            
register1      = [1,1,1];          
register2      = [1,1,1];          
%扩频码
Ind = 0;
for snrs=SNR
    snrs
    Ind = Ind + 1;  
    %m序列
    Mcode = func_Mseq(morder,register1_coff,register1,UE_num); 
    %bpsk
    Mcode = 2*Mcode - 1; 
    MLen  = length(Mcode); 
    %信道衰减初值设定
    rayleigh_parameter; 
    
    MTKL   = 100;                           
    Nerr   = 0; 
    Nall   = 0; 
    for j=1:MTKL 
        %发射
        Tr           = (randn(UE_num,Sim_Num*Mod_order) >= 0); 
        %调制
        [Im,Qm]      = func_Mod(Tr,UE_num,Sim_Num,Mod_order);  
        %扩频
        [Ims,Qms]    = func_spread(Im,Qm,Mcode);  
        %采样
        [Imss,Qmss]  = func_samples(Ims,Qms,Samples);  
        %滤波
        [Imssf,Qmssf]= func_filter2(Imss,Qmss,Filter1);          
        if UE_num == 1                                                    
           Imv = Imssf;      Qmv = Qmssf; 
        else 
           Imv = sum(Imssf); Qmv = sum(Qmssf); 
        end 
        %高斯信道和瑞利信道
        if Is_Rayleigh == 0 
            ImTr = Imv; 
            QmTr = Qmv; 
        else 
            [ImTr,QmTr] = func_fade(Imv,Qmv,Delays,fading,Theta,No,Counts,Nums,length(Imv),Time_fbl,fd,flat); 
            Counts      = Counts + itndel; 
        end 
        %接收机
        SFading     = sum(rot90(Imssf.^2 + Qmssf.^2))/Sim_Num;     
        At          = sqrt(0.5 * SFading * Sym_Rate / Bit_Rate * 10^(-snrs/10)); 
        Imr         = ImTr + randn(size(ImTr)) .* At; 
        Qmr         = QmTr + randn(size(QmTr)) .* At; 
        [Imrf,Qmrf] = func_filter2(Imr,Qmr,Filter0);       
        sampl       = Filter_Order * Samples + 1; 
        Imrfs       = Imrf(:,sampl:Samples:Samples*Sim_Num*MLen+sampl-1); 
        Qmrfs       = Qmrf(:,sampl:Samples:Samples*Sim_Num*MLen+sampl-1); 
        %解扩
        [II,QQ]     = func_despread(Imrfs,Qmrfs,Mcode);             
        %QPSK解调
        demodata    = func_Demod(II,QQ,UE_num,Sim_Num,Mod_order);        
        %误码率分析
        noe2        = sum(sum(abs(Tr-demodata))); 
        nod2        = UE_num * Sim_Num * Mod_order; 
        Nerr        = Nerr + noe2; 
        Nall        = Nall + nod2; 
    end 
    ber       = Nerr / Nall; 
    ERRS(Ind) = ber;
end
if Is_Rayleigh == 0
   save Is_Rayleigh0.mat SNR ERRS
else
   save Is_Rayleigh1.mat SNR ERRS 
end
 
1_092_m
相关文章
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
15小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
|
16小时前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
25 16
基于粒子滤波器的电池剩余使用寿命计算matlab仿真
本研究基于粒子滤波器预测电池剩余使用寿命(RUL),采用MATLAB2022a实现。通过非线性动力学模型模拟电池老化过程,利用粒子滤波器处理非线性和非高斯问题,准确估计电池SOH变化趋势,进而预测RUL。系统仿真结果显示了良好的预测性能。
|
6天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
15天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
16天前
|
算法
超市火灾烟雾蔓延及人员疏散的matlab模拟仿真,带GUI界面
本项目基于MATLAB2022A开发,模拟了大型商业建筑中火灾发生后的人员疏散与烟雾扩散情况。算法通过设定引导点指导人员疏散,考虑视野范围、随机运动及多细胞竞争同一格点的情况。人员疏散时,根据是否处于烟雾区调整运动策略和速度,初始疏散采用正态分布启动。烟雾扩散模型基于流体方程,考虑了无风环境下的简化。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。

热门文章

最新文章