m扩频通信系统在瑞利信道中的误码率性能matlab仿真

简介: m扩频通信系统在瑞利信道中的误码率性能matlab仿真

1.算法描述
本课题,我们主要涉及到两个理论要点,第一个是瑞利衰落条件,第二个是扩频通信。下面分别对这两个理论进行介绍:

   第一个是瑞利衰落条件:

   第二个是扩频通信:

我们从main.m这个主函数的各个模块进行说明:

    整个系统按照如下的流程仿真。

模块一:产生m序列;

1.png

这个部分是产生扩频需要的伪随机序列,对应的matlab函数为:func_Mseq.m

   然后如何产生m序列的,请单独再去看这个函数中的中文注释。

步骤二:产生随机信号,进行调制:

2.png

这里调制函数对应的程序为:func_Mod.m

这里,我们使用的是QPSK调制过程,具体见这个函数的代码注释;

步骤三:对调制后的信息进行扩频

T3.png

这里扩频对应的程序为: func_spread.m,具体见这个函数的代码注释;

步骤四:对扩频后的信号进行滤波
4.png

滤波的步骤分为采样和滤波,具体见上述两个函数的代码注释。

func_samples.m

func_filter2.m

步骤五:瑞利信道的设计

5.png

瑞利信道函数func_fade.m

步骤六:降采样,滤波

6.png

这里也是使用一个滤波函数,原理和上面的滤波函数相同。

步骤七:解扩

7.png

对应的函数为:func_despread.m具体过程见代码注释

步骤八:解调

8.png

对应的函数为:func_Demod.m具体过程见代码注释

2.matlab算法仿真效果
matlab2022a仿真结果如下:

9.png
10.png

3.MATLAB核心程序

Is_Rayleigh  = 1;
 
%符号率
Sym_Rate     = 0.5e6;   
%调制
Mod_order    = 2;       
%比特率 
Bit_Rate     = Sym_Rate*Mod_order;    
%符号数
Sim_Num      = 100;               
SNR          = [-2:1:8];     
%滤波阶数
Filter_Order = 15;   
Samples      = 4;          
%滚降
Alpha        = 0.5;            
Filter1      = func_filter(Filter_Order,Samples,Sym_Rate,Alpha,1);                         
Filter0      = func_filter(Filter_Order,Samples,Sym_Rate,Alpha,0);                        
%扩频码初值
UE_num         = 1;               
morder         = 3;                
register1_coff = [1,3];            
register2_coff = [2,3];            
register1      = [1,1,1];          
register2      = [1,1,1];          
%扩频码
Ind = 0;
for snrs=SNR
    snrs
    Ind = Ind + 1;  
    %m序列
    Mcode = func_Mseq(morder,register1_coff,register1,UE_num); 
    %bpsk
    Mcode = 2*Mcode - 1; 
    MLen  = length(Mcode); 
    %信道衰减初值设定
    rayleigh_parameter; 
    
    MTKL   = 100;                           
    Nerr   = 0; 
    Nall   = 0; 
    for j=1:MTKL 
        %发射
        Tr           = (randn(UE_num,Sim_Num*Mod_order) >= 0); 
        %调制
        [Im,Qm]      = func_Mod(Tr,UE_num,Sim_Num,Mod_order);  
        %扩频
        [Ims,Qms]    = func_spread(Im,Qm,Mcode);  
        %采样
        [Imss,Qmss]  = func_samples(Ims,Qms,Samples);  
        %滤波
        [Imssf,Qmssf]= func_filter2(Imss,Qmss,Filter1);          
        if UE_num == 1                                                    
           Imv = Imssf;      Qmv = Qmssf; 
        else 
           Imv = sum(Imssf); Qmv = sum(Qmssf); 
        end 
        %高斯信道和瑞利信道
        if Is_Rayleigh == 0 
            ImTr = Imv; 
            QmTr = Qmv; 
        else 
            [ImTr,QmTr] = func_fade(Imv,Qmv,Delays,fading,Theta,No,Counts,Nums,length(Imv),Time_fbl,fd,flat); 
            Counts      = Counts + itndel; 
        end 
        %接收机
        SFading     = sum(rot90(Imssf.^2 + Qmssf.^2))/Sim_Num;     
        At          = sqrt(0.5 * SFading * Sym_Rate / Bit_Rate * 10^(-snrs/10)); 
        Imr         = ImTr + randn(size(ImTr)) .* At; 
        Qmr         = QmTr + randn(size(QmTr)) .* At; 
        [Imrf,Qmrf] = func_filter2(Imr,Qmr,Filter0);       
        sampl       = Filter_Order * Samples + 1; 
        Imrfs       = Imrf(:,sampl:Samples:Samples*Sim_Num*MLen+sampl-1); 
        Qmrfs       = Qmrf(:,sampl:Samples:Samples*Sim_Num*MLen+sampl-1); 
        %解扩
        [II,QQ]     = func_despread(Imrfs,Qmrfs,Mcode);             
        %QPSK解调
        demodata    = func_Demod(II,QQ,UE_num,Sim_Num,Mod_order);        
        %误码率分析
        noe2        = sum(sum(abs(Tr-demodata))); 
        nod2        = UE_num * Sim_Num * Mod_order; 
        Nerr        = Nerr + noe2; 
        Nall        = Nall + nod2; 
    end 
    ber       = Nerr / Nall; 
    ERRS(Ind) = ber;
end
if Is_Rayleigh == 0
   save Is_Rayleigh0.mat SNR ERRS
else
   save Is_Rayleigh1.mat SNR ERRS 
end
 
1_092_m
相关文章
|
1天前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
96 65
|
30天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
53 18
|
2月前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
69 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
1月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
53 20
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
137 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)