含分布式光伏的配电网集群划分和集群电压协调控制(Matlab代码实现)

简介: 含分布式光伏的配电网集群划分和集群电压协调控制(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码及文章讲解


image.gif

💥1 概述

摘要:针对配电网中高渗透率分布式光伏接入引起的电压越限问题,本文提出了一种基于网络划分的双层电压控制策略,通过优化光伏变流器的有功和无功输出功率实现光伏发电损失和线路有功损耗最小的优化目标。基于社团检测算法,本文提出了综合考虑电气距离和区域电压调节能力的集群性能指标和网络划分方法。在集群划分基础上,本文提出包含群内自治优化和群间分布式协调的双层电压控制策略,利用其在不同时间尺度上的配合实现了配电网全局电压的快速优化控制。集群自治优化控制通过交替更新群内最优解和虚拟平衡节点电压实现群内电压的实时快速控制。长时间尺度的群间分布式协调控制基于交换方向乘子法,通过相邻集群的有限边界数据交换实现对分布式光伏输出功率的全局优化控制。所提方法被应用于中国安徽金寨的一条实际10.5kV线路和IEEE 123节点系统以验证所提方法的有效性和可行性。

关键词:网络划分;分布式光伏;集群电压控制;分布式优化;有功缩减。

随着分布式光伏发电在配电网中渗透率的提高,配电网的稳定运行面临诸多挑战,其中潮流倒送和过电压问题尤为显著。这不但限制了配电网接纳分布式光伏的能力,而且严重威胁配电网的安全稳定运行。中国安徽金寨地区推行的“光伏扶贫”项目,在配电网中接入了大量的分布式光伏,使得当地配电网面临的调压问题日趋严重。

目前的电压控制方式主要分为四大类[1]:1)集中控制[2],以全局优化为目标,统一调配可控资源,但投资成本高、通讯负担重;2)就地控制[3],具有快响应速度和低投资成本优势,但调压能力有限;3)分布式控制[4],通过节点间的协调,改善了电压调节能力和投资成本,但优化效果有限;4)分散式控制[5],在集群划分基础上利用分群自治和群间协调能够综合集中控制和分布式控制的优势,具有巨大潜力。

在集群划分方面,文献[6]提出一种基于k-means聚类算法的网络划分方法,用于降低配电网辅助服务分析的计算量。聚类算法[7][8]被应用于集群划分时,通常需要根据研究目标对距离指标进行定义。文献[6]、[9]、[10]、[11]和[12]分别用地理距离、线路电阻、无功电压灵敏度、有功相角灵敏度和功率传递分布因子定义节点间距离。除聚类算法外,智能启发式算法也被用于网络的集群划分,如遗传算法[13]、贪婪算法[14]等。文献[15]提出一种多属性集群综合性能指标,囊括电气距离、集群大小、集群数量和集群连通性等指标,并利用混合k-means/进化算法优化综合性能指标来指导电力网络的集群划分。基于社团检测算法,文献[14]提出改进的模块化指标,综合考虑节点间无功电压灵敏度和区域无功功率平衡,并结合贪婪算法进行网络划分。现有文献的集群划分方法没有考虑节点有功注入功率对电压幅值的影响,且缺乏对群内分布式光伏调压能力的评估。

在集群电压控制方面,文献[14]采用粒子群优化算法进行集群内部优化控制,优化目标为群内光伏的无功补偿量或有功缩减量最小,各集群优化自治顺序按电压偏移严重程度排列,但这种群间协调方式会降低电压控制速度且易使资源利用不充分。文献[17]、[18]和[19]采用交换方向乘子法通过集群间的分解协调实现全局电压优化控制。除交换方向乘子法外,对偶次梯度算法[20]也是常用的分布式优化算法,但其收敛速度不如交换方向乘子法。因电力系统的电压优化控制属于非凸NP难题,文献[17]、[18]和[19]分别利用二阶锥松弛、半定规划松弛和直流潮流约分对优化模型进行凸化处理,但三者的优化目标仅为配电网有功损耗最小。对于含高渗透率分布式光伏的配电网,仅以网络有功损耗为目标优化光伏输出有功和无功功率会造成光伏发电损失。在文献[18]的基础上,文献[21]采用分群分层的控制架构对配电网有功损耗与光伏发电损失进行分布式优化,但半定规划松弛引入大量额外变量,且分层分群联合优化的控制架构会降低电压控制速度。

本文以全局电压的低成本快速控制为目标,提出基于电气距离和区域电压调节能力的集群综合性能指标和网络划分方法,并在集群划分基础上,提出结合集群自治优化控制与群间分布式协调控制的双层电压控制策略,通过优化光伏变流器的有功和无功输出功率最小化光伏发电损失和配电线路有功损耗。本文主要贡献包括:

1)对于高比例分布式光伏接入的配电网,仅依靠无功功率补偿不足以完全解决系统的过电压问题,必要时需缩减光伏的有功输出功率,但现有的集群划分指标很少考虑节点有功注入功率对电压幅值的影响。本文所提出的集群综合性能指标同时考虑节点有功和无功功率对电压幅值的灵敏度,并权衡各区域调压资源的分布,确保群内可控资源能够快速有效地解决群内电压越限。

2所提集群自治优化控制,采用交替更新群内最优解和虚拟平衡节点电压的方式实现群内电压的优化自治,仅需依赖群内量测数据而无需群间通信协调。这样不仅降低了高比例分布式电源接入配电网的电压控制复杂度和通信压力,还提高了电压控制速度。

3)本文采用直流潮流方程和交换方向乘子法实现多集群光伏发电损失和线路有功损耗最小化模型的凸化处理和分布式求解。相较于半定规划松弛和二阶锥松弛,直流潮流约分处理后的优化模型更易求解,更适电压灵敏度和区域无功功率平衡,并结合贪婪算法进行网络划分。现有文献的集群划分方法没有考虑节点有功注入功率对电压幅值的影响,且缺乏对群内分布式光伏调压能力的评估。

在集群电压控制方面,文献[14]采用粒子群优化算法进行集群内部优化控制,优化目标为群内光伏的无功补偿量或有功缩减量最小,各集群优化自治顺序按电压偏移严重程度排列,但这种群间协调方式会降低电压控制速度且易使资源利用不充分。文献[17]、[18]和[19]采用交换方向乘子法通过集群间的分解协调实现全局电压优化控制。除交换方向乘子法外,对偶次梯度算法[20]也是常用的分布式优化算法,但其收敛速度不如交换方向乘子法。因电力系统的电压优化控制属于非凸NP难题,文献[17]、[18]和[19]分别利用二阶锥松弛、半定规划松弛和直流潮流约分对优化模型进行凸化处理,但三者的优化目标仅为配电网有功损耗最小。对于含高渗透率分布式光伏的配电网,仅以网络有功损耗为目标优化光伏输出有功和无功功率会造成光伏发电损失。在文献[18]的基础上,文献[21]采用分群分层的控制架构对配电网有功损耗与光伏发电损失进行分布式优化,但半定规划松弛引入大量额外变量,且分层分群联合优化的控制架构会降低电压控制速度。

本文以全局电压的低成本快速控制为目标,提出基于电气距离和区域电压调节能力的集群综合性能指标和网络划分方法,并在集群划分基础上,提出结合集群自治优化控制与群间分布式协调控制的双层电压控制策略,通过优化光伏变流器的有功和无功输出功率最小化光伏发电损失和配电线路有功损耗。本文主要贡献包括:

1)对于高比例分布式光伏接入的配电网,仅依靠无功功率补偿不足以完全解决系统的过电压问题,必要时需缩减光伏的有功输出功率,但现有的集群划分指标很少考虑节点有功注入功率对电压幅值的影响。本文所提出的集群综合性能指标同时考虑节点有功和无功功率对电压幅值的灵敏度,并权衡各区域调压资源的分布,确保群内可控资源能够快速有效地解决群内电压越限。

2所提集群自治优化控制,采用交替更新群内最优解和虚拟平衡节点电压的方式实现群内电压的优化自治,仅需依赖群内量测数据而无需群间通信协调。这样不仅降低了高比例分布式电源接入配电网的电压控制复杂度和通信压力,还提高了电压控制速度。

3)本文采用直流潮流方程和交换方向乘子法实现多集群光伏发电损失和线路有功损耗最小化模型的凸化处理和分布式求解。相较于半定规划松弛和二阶锥松弛,直流潮流约分处理后的优化模型更易求解,更适用于海量分布式光伏接入的配电网。针对直流潮流约分造成的计算精确度问题,在集群并行优化后各集群采用Distflow潮流方程更新边界数据以弥补直流潮流方程的计算偏差。

本文布局如下:第二部分为集群综合性能指标和集群划分方法的介绍。第三部分介绍分区自治优化控制和群间分布式协调优化的相关内容。第四部分为集群划分方法和所提集群电压优化控制的仿真验证。第五部分为本文结论。

image.gif

image.gif

📚2 运行结果

image.gif

image.gif编辑

image.gif

image.gif

image.gif

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]Y. Chai, L. Guo, C. Wang, Z. Zhao, X. Du and J. Pan, "Network Partition and Voltage Coordination Control for Distribution Networks With High Penetration of Distributed PV Units," in IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3396-3407, May 2018, doi: 10.1109/TPWRS.2018.2813400.

🌈4 Matlab代码及文章讲解

https://mbd.pub/o/bread/Y56Yl5pq

相关文章
|
1月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
5月前
|
算法
基于仿射区间的分布式三相不对称配电网潮流算法matlab仿真
```markdown # 摘要 本课题聚焦于基于仿射区间的分布式三相配电网潮流算法在MATLAB2022a中的仿真。算法利用仿射运算处理三相不平衡情况及分布式电源注入,旨在提供比区间算法更精确的不确定区域。仿真结果展示了算法优势。核心程序设计考虑了PQ、PV及PI节点,将不同类型的节点转换统一处理,以适应含分布式电源的配电网潮流计算需求。 ``` 这个摘要以Markdown格式呈现,总字符数为233,满足了240字符以内的要求。
|
6月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
6月前
|
算法
【免费】基于ADMM算法的多微网电能交互分布式运行策略(matlab代码)
【免费】基于ADMM算法的多微网电能交互分布式运行策略(matlab代码)
|
6月前
|
算法 安全
基于价值认同的需求侧电能共享分布式交易策略(matlab完全复现)
基于价值认同的需求侧电能共享分布式交易策略(matlab完全复现)
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
199 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章