m基于GA遗传优化的BP神经网络时间序列预测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传优化的BP神经网络时间序列预测算法matlab仿真

1.算法描述

   将遗传算法(GA)与BP神经网络相结合,使用GA优化BP神经网络的主要参数。然后将影响输出响应值的多个特征因素作为GA-BP神经网络模型的输入神经元, 输出响应值作为输出神经元进行预测测试。BP神经网络的网络层包括输入层,隐含层和输出层三个网络层次,其基本结构如下图所示:

1.png

基于三层网络结构的BP神经网络具有较为广泛的应用场合和训练效果。

    在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

    学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

   BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-1,1]之间的随机数作为BP神经网络的初始权值。

    本文,通过matlab的BP神经网络工具箱函数newff来构建BP神经网络,通过newff函数构建BP网络,其主要步骤如下:

     第一,BP神经网络初始化后,其matlab程序如下:

     net = newff(traindata, trainaim, HiddenNum);

    其中traindata表示训练数据,trainaim表示训练目标,HiddenNum表示BP神经网络隐含层个数,net表示BP神经网络模型函数。

     第二,BP神经网络参数设置,其matlab程序所示:

设置学习率,其matlab程序为 net.trainParam.lr = 0.25;

设置训练误差目标,其matlab程序为net.trainParam.goal = 1e-8;

设置神经网络训练次数,其matlab程序为net.trainParam.epochs = 200;

    第三,BP神经网络的训练,其matlab程序所示:

    net = train(net,train_data,train_aim);

这里通过train函数对神经网络net进行训练,得到训练后的BP神经网络模型。

其算法流程图如图2所示:

2.jpeg

    从图2的算法流程图可知,基于自适应遗传优化的BP神经网络模型其主要通过交叉概率与变异概率的自适应调节,使个体对网络权值进行不断的更新,从而提高BP神经网络的预测精度。通过MATLAB对BP神经网络,基于遗传优化的BP神经网络,基于改进遗传优化的BP神经网络以及基于改进遗传优化的组合BP神经网络等多种算法的股价预测性能。从仿真结果可知,基于改进遗传优化的组合BP神经网络性能略优于改进遗传优化的BP神经网络,而比起传统的BP神经网络预测算法和基于传统遗传优化的BP神经网络预测算法,具有较大的性能优势。

2.仿真效果预览
matlab2022a仿真结果如下:

3.png
4.png
5.png
6.png
7.png
8.png
9.png

3.MATLAB核心程序

Mins = min(C);
Maxs = max(C);
C    = (C-Mins)/(Maxs-Mins);
LEN = 10;
%样本的划分
for i = 1:length(C)-LEN
    Price1(:,i) = C(i:i+LEN-1);
    Price2(i)   = C(i+LEN);
end
 
%训练样本
L1 = floor(0.6*length(Price2));
for i = 1:L1
    train_data(:,i) = Price1(:,i); 
    train_aim(i)    = Price2(i);
end
 
%测试样本
L2 = length(Price2) - L1;
for i = 1:L2
    test_data(:,i) = Price1(:,i+L1); 
    test_aim(i)    = Price2(i+L1);
end
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%如下的是改进BP网络算法
%定义神经网络的各个层的个数
Num_In     = LEN;
Num_Hidden = 5;
Num_Out    = 1;
%构建BP网络
net        = newff(train_data,train_aim,Num_Hidden);
 
ERR1 = [];
ERR2 = [];
ERR3 = [];
 
 
%通过改进遗传算法优化BP参数
net        = func_newGA2(net,Num_In,Num_Hidden,Num_Out,train_data,train_aim);
%网络训练
net.trainParam.showWindow = 0;
net        = train(net,train_data,train_aim);
outputs    = sim(net,test_data);
d1         = test_aim*(Maxs-Mins) + Mins;
d2         = outputs*(Maxs-Mins) + Mins;
 
ERR1   = [ERR1,mean(abs(d1-d2)./d2) ];
ERR2   = [ERR2,mean((abs(d1-d2)./d2).^2) ];
ERR3   = [ERR3,std((abs(d1-d2)./d2).^2) ];
02_034m
相关文章
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
16天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
71 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
59 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
66 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
1月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
1月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
安全 算法 网络协议
网络安全与信息安全知识分享
本文深入探讨了网络安全漏洞、加密技术以及安全意识三个方面,旨在帮助读者更好地理解和应对网络安全威胁。通过分析常见的网络安全漏洞类型及其防范措施,详细介绍对称加密和非对称加密的原理和应用,并强调提高个人和企业安全意识的重要性,为构建更安全的网络环境提供指导。
54 2

热门文章

最新文章