基于ACO蚁群算法的tsp优化问题matlab仿真

简介: 基于ACO蚁群算法的tsp优化问题matlab仿真

1.算法描述

 “基本原理 蚁群算法(Ant Colony Optimization,ACO)是一种基于种群寻优的启发式搜索算法,有意大利学者M.Dorigo等人于1991年首先提出。该算 法受到自然界真实蚁群集体在觅食过程中行为的启发,利用真实蚁群通过个体间的信息传递、搜索从蚁穴到食物间的最短路径等集体寻优特 征,来解决一些离散系统优化中的困难问题。

   算法基本思想:

(1)根据具体问题设置多只蚂蚁,分头并行搜索。

(2)每只蚂蚁完成一次周游后,在行进的路上释放信息素,信息素量与解的质量成正比。

(3)蚂蚁路径的选择根据信息素强度大小(初始信息素量设为相等),同时考虑两点之间的距离,采用随机的局部搜索策略。这使得距离较短的边,其上的信息素量较大,后来的蚂蚁选择该边的概率也较大。

(4)每只蚂蚁只能走合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。

(5)所有蚂蚁都搜索完一次就是迭代一次,每迭代一次就对所有的边做一次信息素更新,原来的蚂蚁死掉,新的蚂蚁进行新一轮搜索。

(6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。

(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。

  将各个蚂蚁随机地置于不同的出发地,对每个蚂蚁k ( k = 1 , 2 , ⋯  , m ) ,按照轮盘赌法得到下面的转移概率公式计算其下一个待访问的城市,直到所有蚂蚁访问完所有的城市。

1.png

2.仿真效果预览
matlab2022a仿真结果如下:

2.png
3.png

3.MATLAB核心程序

CityNum=30;
[dislist,Clist]=tsp(CityNum);
 
Tlist=zeros(CityNum);%禁忌表(tabu list)
cl=100;%保留前cl个最好候选解
bsf=Inf;
tl=50; %禁忌长度(tabu length)
l1=200;%候选解(candidate),不大于n*(n-1)/2(全部领域解个数)
S0=randperm(CityNum);
S=S0;
BSF=S0;
Si=zeros(l1,CityNum);
StopL=200; %终止步数
p=1;
clf;
figure(1);
 
while (p<StopL+1)
    if l1>CityNum*(CityNum)/2
        disp('候选解个数,不大于n*(n-1)/2(全部领域解个数)! 系统自动退出!');
        l1=(CityNum*(CityNum)/2)^.5;
        break;
    end
    ArrS(p)=CalDist(dislist,S);        
    i=1;
    A=zeros(l1,2);
    while i<=l1        
        M=CityNum*rand(1,2);
        M=ceil(M);
        if M(1)~=M(2)
            m1=max(M(1),M(2));m2=min(M(1),M(2));
            A(i,1)=m1;A(i,2)=m2;
            if i==1
                isdel=0;
            else
                for j=1:i-1
                    if A(i,1)==A(j,1)&&A(i,2)==A(j,2)
                        isdel=1;
                        break;
                    else
                        isdel=0;
                    end
                end
            end
            if ~isdel
                i=i+1;
            else
                i=i;
            end
        else 
            i=i;
        end
    end
    
    for i=1:l1
        Si(i,:)=S;
        Si(i,[A(i,1),A(i,2)])=S([A(i,2),A(i,1)]);
        CCL(i,1)=i;
        CCL(i,2)=CalDist(dislist,Si(i,:));
        CCL(i,3)=S(A(i,1));
        CCL(i,4)=S(A(i,2));   
    end
    [fs fin]=sort(CCL(:,2));
    for i=1:cl
        CL(i,:)=CCL(fin(i),:);
    end
    
    if CL(1,2)<bsf  %藐视准则(aspiration criterion)
        bsf=CL(1,2);
        S=Si(CL(1,1),:);        
        BSF=S;
        for m=1:CityNum
            for n=1:CityNum
                if Tlist(m,n)~=0
                    Tlist(m,n)=Tlist(m,n)-1;
                end
            end
        end
        Tlist(CL(1,3),CL(1,4))=tl;
    else  
        for i=1:cl
            if Tlist(CL(i,3),CL(i,4))==0
                S=Si(CL(i,1),:);
                for m=1:CityNum
                    for n=1:CityNum
                        if Tlist(m,n)~=0
                            Tlist(m,n)=Tlist(m,n)-1;
                        end
                    end
                end
                Tlist(CL(i,3),CL(i,4))=tl;
                break;
            end
        end
    end
    
    Arrbsf(p)=bsf;
    drawTSP(Clist,BSF,bsf,p,0);
    p=p+1;
end
BestShortcut=BSF
theMinDistance=bsf
 
figure(2);
plot(Arrbsf,'r'); hold on;
plot(ArrS,'b');grid;
title('搜索过程');
legend('最优解','当前解');
A_073
相关文章
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
28 15
|
19小时前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真