m基于基站休眠的LTE-A异构网络中节能算法matlab仿真

简介: m基于基站休眠的LTE-A异构网络中节能算法matlab仿真

1.算法描述
要求
1.开发一个软件工具,可以直观地演示如何在LTE-A异构网络中通过基站的睡眠模式节约能源
2.需要演示基于用户的移动性如何设置基站的开关(睡眠模式)
3.自己设计基站睡眠模式的直观展示原则
4.在模拟异构网络时展示系统的能量消耗

成果
1.一个软件工具可以直观展示LTE-A异构网中基站的睡眠模式
2.在特定的异构网络布局和特定的时间框架下演示基站的开启和关闭
3.直观展示能源效率基站睡眠模式的性能指标

这里,我们主要设置一个19个基站构造的规则六边形小区,具体的仿真效果如下所示:

1.png

    这里,我们模拟了19个基站构成的小区,每个小区中间位置有一个基站,上图中红色区域部分。然后紫色的带内表示用户,这些点是在随机的运动的。蓝色方框是在每个小区内随机分布的PICO微微网络基站。

    另外,这里我们模拟的是一个城市的中心区域的模型,即中间小区用户数量较多,基站基本上处于满负荷状态,而周边几个小区用户数量较少。

    用户在实际中做的运动方程为随机方向的变速运动,因此这里设备的运动方程用如下的式子表示:

2.png

这里,假设设备是平面运动的,所以Z一直为0.

   其中速度因子,我考虑是模拟设备的变加速运动,即一个固定的速度V0和每个时刻不同的加速度的情况。角度为一个恒定的值与随机变量的叠加。即:

3.png

    这样的情况,可以更加符合实际的设备运动的复杂情况。当a(t)为0的时候,设备做匀速运动。当a(t)为常数的时候,为匀加速运动,当a(t)为变化的值得时候,那么系统就为变加速运动。

      然后这里我简单的接收一下我们这个异构网络的休眠切换算法:

    在异构网络中,由于PICO网络的能耗远远小于MICRO基站的能耗,因此,在实际中,我们需要尽可能多的将设备与PICO基站建立连接,并同时通过系统对没有用户参与连接的MICRO基站进行关闭。

    节点休眠算法的主要含义为:

    当基站关闭以后,可以大大降低能耗,此时的基站失去了发送的能力,被称为休眠基站。而在一个大型的网络中,由于每个单一的基站并不会在每时每刻都处于工作之中,那么会对整个网络产生一定的冗余,在这样一个环境中,完全可以让一部分基站休眠,而让另一部分基站工作。另外,在基站密度较高的区域,此时,在不影响整个小区性能的前提下,通过关闭一部分基站的方法,可以有效降低整个小区的功耗。

    下面讨论在引入基站休眠算法之后,整个小区的功耗。

    假设在某一时刻,整个小区有k0个基站关闭,k-k0个基站在正常工作,那么整个小区的总的功耗为:

4.png
5.png

先对一个普通的能耗问题进行仿真,即如果检测到对应小区的用户数量为0,则基站自动进入休眠状态,如果出现用户,则基站开始工作。

6.png

第二,对比用户和宏基站距离以及和微微基站的距离;

第三,开关判决:

     如果均不在两种基站的有效覆盖范围之内,那么保持原来的状态,

    如果用户在邻近的宏基站的覆盖范围之内,那么当前用户和宏基站建立连接,而关闭对应的微微基站,如果用户在微微基站的覆盖范围之内,那么用户和微微基站建立连接,并关闭宏基站。

    如果用户同时在微微基站和宏基站的有效覆盖范围内,那么选择实际功耗小的基站进行连接,通常情况下,如果微微基站没有饱和,则用户直接和微微基站建立连接。

第四,功耗的计算,即计算处于工作状态的基站,然后计算对应每个基站的用户数量,然后计算总的功耗:

7.png

2.仿真效果预览
matlab2022a仿真结果如下:

8.png
9.png

3.MATLAB核心程序

%基站坐标
%macrocell
XMBS   = [];
YMBS   = [];
 
%=============用户运动=====================================================
PX  = zeros(NU,TIME);
PY  = zeros(NU,TIME);
figure(1);
ind = 0;
for i=(-1*p):p 
    for j=(-1*q):q 
        %先确定macrocell的拓扑结构
        Xcen = i*1.5*R; 
        Ycen = (j+mod(i,2)/2)*sqrt(3)*R; 
        if sqrt(Xcen^2 + Ycen^2) <= 4*R   
           x = x0 + Xcen; 
           y = y0 + Ycen; 
           XMBS = [XMBS,Xcen];
           YMBS = [YMBS,Ycen];
           plot(x,y,'b');
           hold on;
           plot(Xcen,Ycen,'r*');
           hold on 
        end
    end 
end 
 
 
%然后产生picocell位置
NP    = 2;
XPBS0 = zeros(19,NP);
YPBS0 = zeros(19,NP);
XPBS  = zeros(19*NP,1);
YPBS  = zeros(19*NP,1);
II    = zeros(1,19);
for i=1:19 
    j=1;
    while j<=NP     
          %随机生成横坐标
          XPBS0(i,j) = (1000/sqrt(3)*rand()-500/sqrt(3))+XMBS(i);
          %随机生成纵坐标
          YPBS0(i,j) = (500*rand()-250)+YMBS(i);
          %算pico距离macro的距离
          distance  = sqrt((XPBS0(i,j)-XMBS(i))^2+(YPBS0(i,j)-YMBS(i))^2);
          h         = 1;
          judge     = 0;
          picodis   = 50;
          while h<=i
                l=1;
                while l<j
                      %遍历已经生成的pico,确认pico之间的距离
                      picodis=sqrt((XPBS0(i,j)-XPBS0(h,l))^2+(YPBS0(i,j)-YPBS0(h,l))^2);
                      if picodis<40%如果有距离小于40的,则不满足条件,跳出循环,重新生成pico              
                         judge=1;
                         break;
                      end;
                      l=l+1;
                end;
                if judge==1
                    break;
                end
                h=h+1;
          end;
          if abs(XPBS0(i,j)-XMBS(i)) + abs(YPBS0(i,j)-YMBS(i))/sqrt(3)<= 500/sqrt(3)&&distance>75&&picodis>40 
             j = j+1;
          end
    end 
    II(i)=i;
end
 
for i=1:19 
    for j = 1:NP
        plot(XPBS0(i,j),YPBS0(i,j),'b-s'); 
        hold on;
    end
end
%PICO坐标值的转换
XPBS = reshape(XPBS0,[19*NP,1]);
YPBS = reshape(YPBS0,[19*NP,1]);
 
axis equal; 
hold on;
plot(Xu,Yu,'m.');
hold on;
legend('小区边界','基站BS');
axis([-world-5,world+5,-world-5,world+5]); 
title('模拟场景(红色BS:ON,黑色BS:OFF)');
hold on;
 
 
 
 
 
 
 
 
%假设最匀速运动
for t = 1:TIME
    t
    for i = 1:NU
        if t == 1
           PX(i,t) = Xu(i);
           PY(i,t) = Yu(i);
        else
           V(i)    = 23*(0.5+randn);
           Theta(i)= pi*randn;%确定一个随机的运动方向 
           PX(i,t) = PX(i,t-1) + V(i)*cos(Theta(i));
           PY(i,t) = PY(i,t-1) + V(i)*sin(Theta(i));
        end
    end
end
 
 
%%
%=============智能节点休眠算法==============================================
%基站坐标
XMBS;
YMBS;
%用户移动路线的坐标变化情况
PX;
PY;
 
Power1 = zeros(1,TIME);
Power2 = zeros(1,TIME);
 
%各个小区的用户连接数
USERS1 = zeros(19,TIME);
USERS2 = zeros(19,TIME);
USERS1p= zeros(19*NP,TIME);
USERS2p= zeros(19*NP,TIME);
 
 
for times = 1:TIME
    disp(times);
    for j = 1:NU
        UX(j) = PX(j,times);
        UY(j) = PY(j,times);
    end
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %PART I 计算基站全部正常工作的时候的网络的能耗
    %PART I 计算基站全部正常工作的时候的网络的能耗
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %计算每个小区内对应的人数
    %用户所在小区的编号
    %先计算MICRO
    UE_BSid1 = zeros(1,NU);
    BS_UEn1  = zeros(1,19);
    Pow_bs1  = zeros(1,19);
    for j1 = 1:NU
        for j2 = 1:19
            dist(j2) = sqrt((UX(j1) - XMBS(j2))^2 + (UY(j1) - YMBS(j2))^2);
        end
        %计算最近的,即其对应的小区位置
        [V,I] = min(dist);
        UE_BSid1(j1) = I;
    end
 
    %再计算PICRO
    UE_BSid1p = zeros(1,NU);
    BS_UEn1p  = zeros(1,19*NP);
    Pow_bs1p  = zeros(1,19*NP);
    for j1 = 1:NU
        for j2 = 1:19*NP
            distP(j2) = sqrt((UX(j1) - XPBS(j2))^2 + (UY(j1) - YPBS(j2))^2);
        end
        %计算最近的,即其对应的小区位置
        [V,I] = min(distP);
        UE_BSid1p(j1) = I;
    end
    
    %根据每个用户和宏小区和微小区之间的距离,判断当然用户和虹小区建立连接,还是和微小区建立连接
    %统计每个用户,其连入情况
    %再计算PICRO
    UE_BSid1P2 = zeros(2,NU);
    for j = 1:NU
        Mind = UE_BSid1(j);
        Pind = UE_BSid1p(j);
        %判断该用户具体连接到哪个基站
        Mdist= sqrt((UX(j) - XMBS(Mind))^2 + (UY(j) - YMBS(Mind))^2);
        Pdist= sqrt((UX(j) - XPBS(Pind))^2 + (UY(j) - YPBS(Pind))^2);
        if Mdist >= 2*Pdist
           UE_BSid1P2(:,j) = [0,Pind];
        else
           UE_BSid1P2(:,j) = [1,Mind];  
        end
    end
    %根据实际情况,计算宏基站功率和微基站功率
    MM = find(UE_BSid1P2(1,:)==1);
    PP = find(UE_BSid1P2(1,:)==0);
    
    %统计每个小区的用户个数
    for j1 = 1:19
        e=find(UE_BSid1P2(2,MM)==j1);  
        BS_UEn1(j1) = length(e);
    end
    for j1 = 1:19
        if BS_UEn1(j1) <= SNU
           Pow_bs1(j1) = 137+57*BS_UEn1(j1)/SNU;
        else
           Pow_bs1(j1) = 137+57; 
        end
    end
    
    for j1 = 1:19*NP
        e=find(UE_BSid1P2(2,PP)==j1);  
        BS_UEn1p(j1) = length(e);
    end
    for j1 = 1:19*NP
        if BS_UEn1p(j1) <= SNUP
           Pow_bs1p(j1) = 12+8*BS_UEn1p(j1)/SNU;
        else
           Pow_bs1p(j1) = 12+8; 
        end
    end
    
    
    
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %PART II 基站休眠算法 
    %PART II 基站休眠算法 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
    %先计算MICRO
    UE_BSid2 = zeros(1,NU);
    BS_UEn2  = zeros(1,19);
    Pow_bs2  = zeros(1,19);
    for j1 = 1:NU
        for j2 = 1:19
            dist2(j2) = sqrt((UX(j1) - XMBS(j2))^2 + (UY(j1) - YMBS(j2))^2);
        end
        %计算最近的,即其对应的小区位置
        [V,I] = min(dist2);
        UE_BSid2(j1) = I;
    end
 
    %再计算PICRO
    UE_BSid2p = zeros(1,NU);
    BS_UEn2p  = zeros(1,19*NP);
    Pow_bs2p  = zeros(1,19*NP);
    for j1 = 1:NU
        for j2 = 1:19*NP
            distP(j2) = sqrt((UX(j1) - XPBS(j2))^2 + (UY(j1) - YPBS(j2))^2);
        end
        %计算最近的,即其对应的小区位置
        [V,I] = min(distP);
        UE_BSid2p(j1) = I;
    end
    
    %根据每个用户和宏小区和微小区之间的距离,判断当然用户和虹小区建立连接,还是和微小区建立连接
    %统计每个用户,其连入情况
    %再计算PICRO
    UE_BSid2P2 = zeros(2,NU);
    for j = 1:NU
        Mind2 = UE_BSid2(j);
        Pind2 = UE_BSid2p(j);
        %判断该用户具体连接到哪个基站
        Mdist2= sqrt((UX(j) - XMBS(Mind2))^2 + (UY(j) - YMBS(Mind2))^2);
        Pdist2= sqrt((UX(j) - XPBS(Pind2))^2 + (UY(j) - YPBS(Pind2))^2);
        if Mdist2 >= 2*Pdist2
           UE_BSid2P2(:,j) = [0,Pind2];
        else
           UE_BSid2P2(:,j) = [1,Mind2];  
        end
    end
    %根据实际情况,计算宏基站功率和微基站功率
    MM2 = find(UE_BSid2P2(1,:)==1);
    PP2 = find(UE_BSid2P2(1,:)==0);
    
    %统计每个小区的用户个数
    for j1 = 1:19
        e2=find(UE_BSid2P2(2,MM2)==j1);  
        BS_UEn2(j1) = length(e2);
    end
 
    [ON_OFF2m,Power2m] = func_sleep(SNU,BS_UEn2,19,NP);
 
    for j1 = 1:19*NP
        e2=find(UE_BSid2P2(2,PP)==j1);  
        BS_UEn2p(j1) = length(e2);
    end
    [ON_OFF2p,Power2p] = func_sleep(SNUP,BS_UEn2p,19*NP,NP);
    
 
    
    %记录能耗_全部打开的能耗
    Power1(times) = sum(Pow_bs1) + sum(Pow_bs1p);
    %普通休眠下的能耗
    Power2(times) = sum(Power2m) + sum(Power2p);
    
    USERS1(:,times)  = BS_UEn1;
    USERS1p(:,times) = BS_UEn1p;
    
    USERS2(:,times)  = BS_UEn2';
    USERS2p(:,times) = BS_UEn2p';
end
 
 
%%
%=============根据基站休眠算法的优化结果,动态的显示基站开关状态===============
%动态显示不同时期的开关状态和对应的能耗对比效果
figure;
plot(1:TIME,Power1,'b','linewidth',2);
hold on
plot(1:TIME,Power2,'g','linewidth',2);
xlabel('仿真时间');
ylabel('小区总功耗');
grid on
legend('未进行基站休眠的网络功耗','进行基站休眠的网络功耗');
 
 
 
 
%动画演示
figure;
for t = 1:TIME
    
    if mod(t,5)==1
    
       subplot(221);
       tmps1 = USERS1(:,t);
       stem(1:19,tmps1);
       title('没有sleep mode的情况下每一个小区连接用户的数目');
       axis([0,20,0,40]);
       
       subplot(222);
       tmps2 = USERS2(:,t);
       IND1  = find(tmps2==0);
       IND2  = find(tmps2>0);
       stem(IND2,tmps2(IND2),'b');
       hold on;
       stem(IND1,tmps2(IND1),'r');
       hold off;
       legend('基站打开','基站关闭');
       title('有sleep mode下各个小区连接用户的数目的动态图');
       axis([0,20,0,40]);
 
       subplot(2,2,[3,4]);
       plot(1:t,Power1(1:t),'b','linewidth',2);
       hold on
       plot(1:t,Power2(1:t),'r','linewidth',2);
       xlabel('仿真时间');
       ylabel('小区总功耗');
       grid on
       legend('未进行基站休眠的网络功耗','进行基站休眠的网络功耗');
       axis([1,TIME,2500,3800]);
    end
    pause(0.0005);
end
01_090_m
相关文章
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
15小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
25天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
22天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。