m基于梯度优化的混沌PSO磁悬浮球系统模型优化的matlab仿真

简介: m基于梯度优化的混沌PSO磁悬浮球系统模型优化的matlab仿真

1.算法描述

     基本确定融合后的优化控制算法,即混沌粒子群优化算法,将该算法应用于对PID的参数整定上,通过仿真验证算法的可行性。将混沌思想引入PSO算法,前期工作首先对混沌算法局部搜索能力差和算法可能需要花费长时间才能取得较好优化性能的不足进行了改进,提出梯度优化混沌算法的思想,基本实现了梯度算法与混沌算法的融合,实现了用梯度算法改善混沌算法的预期目的,达到了取长补短的效果,使得该算法即高效又不容易陷入局部极小,为后期将优化后的混沌算法引入PSO算法做好了准备。主要研究如何把PSO算法与得到的混沌算法有效的结合,实现预期目的,用混沌算法来改善PSO算法,使其能持续在全局范围搜索,避免算法早熟。研究实现如下思路的混沌粒子群优化算法:将混沌映射直接映入PSO算法的迭代过程,使算法能持续在全局范围搜索,避免算法早熟,但对于算法后期收敛精度不高和收敛速度下降的问题,此时考虑再将梯度算法引入,以粒子群当前获得的最优粒子所在位置为初始点进行梯度搜索,提高局部搜索效率。再将混沌PSO和梯度算法的搜索过程进行循环,得到新的混沌PSO优化算法。将该算法应用到PID参数整定上,与前期所设计的算法进行比较,得到更优的。

   我们需要构建磁悬浮球系统模型的控制对象模型。这里,我们通过传递函数的形式来实现磁悬浮球的表达式,具体的推导过程如下所示:

1.png

   上图中,Xo为磁悬浮球的平衡位置的间隙,x为钢球在Y方向上的偏离平衡位置的位移。Io和i分别为电磁铁线圈的偏置电流和控制电流,F为电磁铁对钢球所产生的电磁铁,mg为钢球所受重力。为了保持平衡,合理F-mg必须为0.假设平衡状态下,电流为i0,钢球和电磁铁之间的气隙为x0,那么这个时候有如下的表达式:

2.png
3.png
4.png
5.png

   其中K0和P,通过预先给定的参数,可以获得,其为两个固定的常数,这个可以根据实际的参数自己设置,我们将上述的Gs作为控制器系统的控制对象进行控制处理。

2.仿真效果预览
matlab2022a仿真结果如下:

6.png
7.png
8.png
9.png
10.png
11.png
12.png

3.MATLAB核心程序

global yd y timef
%定义磁悬浮球传递函数
tmac = 1000;
den  =[1,32,2,1];
 
wmax = 0.9;
wmin = 0.1;
c1   = 0.3;
c2   = 0.3;
%Kp的范围
amin = 0;
amax = 100;
%Ki的范围
bmin = 0;
bmax = 100;
%Kd的范围
cmin = 0;
cmax = 100;
%速度的范围
vmin =-0.1;
vmax = 0.1;
%粒子数目
Pop  = 5;
BsJ  = 0;
%迭代次数
T    = 200;
%粒子初始化
for i=1:Pop
    Kpid(i,1)   = rand(1)*(amax-amin)+amin;
    a_best(i)   = Kpid(i,1);
    Kpid(i,2)   = rand(1)*(bmax-bmin)+bmin;
    b_best(i)   = Kpid(i,2);
    Kpid(i,3)   = rand(1)*(cmax-cmin)+cmin;
    c_best(i)   = Kpid(i,3);
    va(i)       =(vmax-vmin)*rand(1)+vmin;
    vb(i)       =(vmax-vmin)*rand(1)+vmin;
    vc(i)       =(vmax-vmin)*rand(1)+vmin;
    Kpidi       = Kpid(i,:);  
    [BsJ,Y]     = func_pid_controller_fitness(Kpidi,tmac,den);   
    BsJi(i)     = BsJ;
end
a            = Kpid(:,1);
b            = Kpid(:,2);
c            = Kpid(:,3);
[minJi,index]= min(BsJi);
Ta_best      = a(index);
Tb_best      = b(index);
Tc_best      = c(index); 
 
for t=1:T
    
    time(t) = t;
    w       = wmax-t*(wmax-wmin)/T;
    for i=1:Pop
        va(i)     = w*va(i)+c1*rand(1)*(a_best(i)-Kpid(i,1))+c2*rand(1)*(Ta_best-Kpid(i,1));
        Kpid(i,1) = Kpid(i,1)+va(i);
        if Kpid(i,1)>=amax
           Kpid(i,1)=amax;
        end
        if Kpid(i,1)<=amin
           Kpid(i,1)=amin;
        end
        
        vb(i)     = w*vb(i)+c1*rand(1)*(b_best(i)-Kpid(i,2))+c2*rand(1)*(Tb_best-Kpid(i,2));
        Kpid(i,2) = Kpid(i,2)+vb(i);
        if Kpid(i,2)>=bmax
           Kpid(i,2)=bmax;
        end
        if Kpid(i,2)<=bmin
           Kpid(i,2)=bmin;
        end
        
        vc(i)     = w*vc(i)+c1*rand(1)*(c_best(i)-Kpid(i,3))+c2*rand(1)*(Tc_best-Kpid(i,3));
        Kpid(i,3) = Kpid(i,3)+vc(i);
        if Kpid(i,3)>=cmax
           Kpid(i,3)=cmax;
        end
        if Kpid(i,3)<=cmin
           Kpid(i,3)=cmin;
        end
    
        Kpidi       = Kpid(i,:);
        [BsJ,Y]     = func_pid_controller_fitness(Kpidi,tmac,den);
 
        if BsJ<BsJi(i)
           BsJi(i)   = BsJ;
           a_best(i) = Kpid(i,1);
           b_best(i) = Kpid(i,2);
           c_best(i) = Kpid(i,3);
        end
        if BsJi(i)<minJi
           minJi   = BsJi(i);
           Ta_best = Kpid(i,1);
           Tb_best = Kpid(i,2);
           Tc_best = Kpid(i,3);
        end
    end
    Jibest(t) = minJi;
    A_best(t) = Ta_best;
    B_best(t) = Tb_best;
    C_best(t) = Tc_best;
end
 
figure;
plot(Jibest,'r','linewidth',2);
xlabel('迭代次数');
ylabel('J');
grid on
 
 
save R1.mat Jibest timef yd y
 
figure;
subplot(311);
plot(time,A_best,'b','linewidth',2);
xlabel('times(s)');
ylabel('Kp');
grid on
subplot(312);
plot(time,B_best,'b','linewidth',2);
xlabel('times(s)');
ylabel('Ki');
grid on
subplot(313);
plot(time,C_best,'b','linewidth',2);
xlabel('times(s)');
ylabel('Kd');
grid on
相关文章
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
9天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
10天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
19天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
25天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1月前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
1月前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
42 8
|
2月前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
247 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章