educoder头歌数据结构 查找 第2关:实现散列查找(答案无错AC版)

简介: educoder头歌数据结构 查找 第2关:实现散列查找(答案无错AC版)

任务描述

本关要求通过补全函数ILH_InsKeyILH_DelKey来分别实现插入和删除操作。

相关知识


本关讨论散列存储,散列函数使用除留余数法,冲突解决方法采用独立链表地址法。假设有 8 个关键码: 7 , 15 , 23 , 31 , 12 , 14 , 10 , 17 ,采用散列函数hash(key)=key%7,其存储结构图如图 1 所示,它由 7 个独立链表组成,散列值相同的关键码在同一个链表里,独立链表的头结点组成散列表,一共 7 行,编号 0 , 1 , … , 6 。独立链表的每个结点是一个 struct HNode 结构,其定义如下:

  1. struct HNode {
  2. int key; //假设关键码为整数
  3. HNode* next;
  4. };


在散列表中,如果表项的key字段等于 0 (假设有效的关键码值不等于 0 ),则表示该行是一条空链表,例如图 1 中编号为 4 和编号为 6 的行。

散列表的开始地址保存在pn中,散列表的行数为n(图 1 中,n=7),将pnn组织成结构:

  1. struct LHTable {
  2. HNode* pn; //指向散列表,每个表结点是独立链表的表头结点
  3. int n; //散列表的长度,一般取(小于等于数据个数的最大)质数
  4. };


定义如下操作,各操作函数的功能详见下面给出的代码文件 indLnkHash.cpp 的代码框架:

LHTable* ILH_Create(int n);


void ILH_Free(LHTable* pt);


bool ILH_InsKey(LHTable* pt, int x);


bool ILH_FindKey(LHTable* pt, int x);


bool ILH_DelKey(LHTable* pt, int x);


void ILH_Print(LHTable *pt);

编程要求

本关的编程任务是补全 step2/indLnkHash.cpp 文件中的ILH_InsKeyILH_DelKey函数来分别实现插入和删除操作。

  • 具体请参见后续测试样例。

本关涉及的代码文件 indLnkHash.cpp 的代码框架如下:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "indLnkHash.h"
LHTable* ILH_Create(int n)
//创建散列表, n为表长度,最佳取值:n取小于等于数据个数的最大质数
{
HNode* pn=(HNode*)malloc(sizeof(HNode)*n);
for (int i=0; i<n; i++) {
pn[i].key=0;
pn[i].next=NULL;
}
LHTable* pt=(LHTable*)malloc(sizeof(LHTable));
pt-> pn=pn;
pt->n=n;
return pt;
}
void ILH_Free(LHTable* pt)
//释放散列表
{
if (pt==NULL) return;
for (int i=0; i<pt->n; i++) {
HNode* curr=pt->pn[i].next;
while (curr) {
HNode* next=curr->next;
free(curr);
curr=next;
}
}
free(pt->pn);
free(pt);
}
bool ILH_InsKey(LHTable* pt, int x)
//插入关键码x
//返回true,表示插入成功
//返回false,表示插入失败(关键码已经存在)
{
// 请在此添加代码,补全函数ILH_InsKey
/********** Begin *********/
/********** End **********/
}
bool ILH_FindKey(LHTable* pt, int x)
//查找关键码x
//返回true表示找到
//返回false表示没找到
{
int d=x%pt->n;
if (pt->pn[d].key==0) {
return false;
}
else if (pt->pn[d].key==x)
return true;
HNode* curr=pt->pn[d].next;
while (curr && curr->key!=x) curr=curr->next;
if (curr) return true;
else return false;
}
bool ILH_DelKey(LHTable* pt, int x)
//删除关键码
//返回true表示该关键码存在,且成功删除
//返回false表示该关键码不存在
{
// 请在此添加代码,补全函数ILH_DelKey
/********** Begin *********/
/********** End **********/
}
void ILH_Print(LHTable *pt)
{
for (int i=0; i<pt->n; i++) {
printf("%5d: ", i);
if (pt->pn[i].key) {
printf("%d ", pt->pn[i].key);
HNode* curr=pt->pn[i].next;
while (curr) {
printf("-> %d ", curr->key);
curr=curr->next;
}
printf("\n");
}
else
printf("-\n");
}
}

测试说明

本关的测试文件是 step2/Main.cpp ,测试过程如下:

  1. 平台编译 step2/Main.cpp ,然后链接相关程序库并生成 exe 可执行文件;
  2. 平台运行该 exe 可执行文件,并以标准输入方式提供测试输入;
  3. 平台获取该 exe 可执行文件的输出,然后将其与预期输出对比,如果一致则测试通过;否则测试失败。

输入输出格式说明


输入格式: 首先输入一个正整数n,创建一个长n的散列表。 然后输入多个操作:如果输入 “insert” ,则后面跟一个数x,表示将x插入;如果输入 “delete” ,则后面跟一个数x,表示将x删除;如果输入 “end” ,表示输入结束。


输出格式: 输出n个独立链表。


以下是平台对 step2/Main.cpp 的样例测试集:


样例输入: 11 insert 54 insert 77 insert 94 insert 89 insert 14 insert 45 insert 76 insert 23 insert 43 insert 47 end


样例输出: 0: 77 1: 89 -> 45 -> 23 2: - 3: 14 -> 47 4: - 5: - 6: 94 7: - 8: - 9: - 10: 54 -> 76 -> 43


开始你的任务吧,祝你成功

AC_Code

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "indLnkHash.h"
LHTable* ILH_Create(int n)
//创建散列表, n为表长度,最佳取值:n取小于等于数据个数的最大质数
{
    HNode* pn=(HNode*)malloc(sizeof(HNode)*n);
    for (int i=0; i<n; i++) {
        pn[i].key=0;
        pn[i].next=NULL;
    }
    LHTable* pt=(LHTable*)malloc(sizeof(LHTable));
    pt-> pn=pn;
    pt->n=n;
    return pt;
}
void ILH_Free(LHTable* pt)
//释放散列表
{
    if (pt==NULL) return;
    for (int i=0; i<pt->n; i++) {
        HNode* curr=pt->pn[i].next;
        while (curr) {
            HNode* next=curr->next;
            free(curr);
            curr=next;
        }
    }
    free(pt->pn);
    free(pt);
}
bool ILH_InsKey(LHTable* pt, int x)
//插入关键码x
//返回true,表示插入成功
//返回false,表示插入失败(关键码已经存在)
{
    /*请在BEGIN和END之间实现你的代码*/
    /*****BEGIN*****/
    int d=x%pt->n;
    if (pt->pn[d].key==0) {
        pt->pn[d].key=x;
        return true;
    }
    else if (pt->pn[d].key==x) 
        return false;
    HNode* prev=&(pt->pn[d]);
    HNode* curr=pt->pn[d].next;
    while (curr && curr->key!=x) {prev=curr; curr=curr->next;}
    if (curr) return  false;
    HNode* pnode=(HNode*)malloc(sizeof(HNode));
    pnode->key=x;
    pnode->next=NULL;//pt->pn[d].next;
    prev->next=pnode;
    return true;
    /******END******/
    /*请不要修改[BEGIN,END]区域外的代码*/
}
bool ILH_FindKey(LHTable* pt, int x)
//查找关键码x
//返回true表示找到
//返回false表示没找到
{
    int d=x%pt->n;
    if (pt->pn[d].key==0) {
        return false;
    }
    else if (pt->pn[d].key==x) 
        return true;
    HNode* curr=pt->pn[d].next;
    while (curr && curr->key!=x) curr=curr->next;
    if (curr) return  true;
    else return false;
}
bool ILH_DelKey(LHTable* pt, int x)
//删除关键码
//返回true表示该关键码存在,且成功删除
//返回false表示该关键码不存在
{
    /*请在BEGIN和END之间实现你的代码*/
    /*****BEGIN*****/
    int d=x%pt->n;//关键码x的散列值d
    if (pt->pn[d].key==0) {
        return false;
    }
    else if (pt->pn[d].key==x)  {
        if (pt->pn[d].next ==NULL) 
            pt->pn[d].key=0;
        else {
            HNode* first=pt->pn[d].next;
            pt->pn[d].key=first->key;
            pt->pn[d].next=first->next;
            free(first);
        }
        return true;
    }
    HNode* prev=&(pt->pn[d]);
    HNode* curr=pt->pn[d].next;
    while (curr && curr->key!=x) {prev=curr; curr=curr->next;}
    if (curr==NULL) return false;
    prev->next=curr->next;
    free(curr);
    return true;
    /******END******/
    /*请不要修改[BEGIN,END]区域外的代码*/
}
void ILH_Print(LHTable *pt)
{
    for (int i=0; i<pt->n; i++) {
        printf("%5d:", i);
        if (pt->pn[i].key) {
            printf("%d", pt->pn[i].key);
            HNode* curr=pt->pn[i].next;
            while (curr) {
                printf("->%d", curr->key);
                curr=curr->next;
            }
            printf("\n");
        }
        else 
            printf("-\n");
    }
}
相关文章
|
7月前
|
存储 索引
数据结构(顺序结构、链式结构、索引结构、散列结构)
数据结构(顺序结构、链式结构、索引结构、散列结构)
|
存储
educoder头歌数据结构 查找 第1关:实现折半查找
educoder头歌数据结构 查找 第1关:实现折半查找
1006 0
educoder头歌数据结构 查找 第1关:实现折半查找
|
6月前
|
存储 算法 NoSQL
数据结构和算法——哈希查找冲突处理方法(开放地址法-线性探测、平方探测、双散列探测、再散列,分离链接法)
数据结构和算法——哈希查找冲突处理方法(开放地址法-线性探测、平方探测、双散列探测、再散列,分离链接法)
190 1
|
6月前
|
存储 算法
数据结构和算法——了解哈希表(哈希查找、散列的基本思想)
数据结构和算法——了解哈希表(哈希查找、散列的基本思想)
47 0
|
7月前
|
存储 缓存 算法
【数据结构查找算法篇】----散列查找【实战项目】
【数据结构查找算法篇】----散列查找【实战项目】
93 10
|
7月前
|
存储 Serverless
【数据结构】万字一文手把手解读哈希————(开/闭散列)解决哈希冲突完整详解(6)
【数据结构】万字一文手把手解读哈希————(开/闭散列)解决哈希冲突完整详解(6)
|
存储 算法 NoSQL
educoder数据结构与算法 队列 第1关:实现一个顺序存储的队列
educoder数据结构与算法 队列 第1关:实现一个顺序存储的队列
816 0
educoder数据结构与算法 队列 第1关:实现一个顺序存储的队列
|
算法
educoder数据结构 字符串匹配 第2关:实现KMP字符串匹配
educoder数据结构 字符串匹配 第2关:实现KMP字符串匹配
405 0
educoder数据结构 字符串匹配 第2关:实现KMP字符串匹配
|
存储 算法 NoSQL
educoder数据结构与算法 队列 第2关 实现一个链接存储的队列
educoder数据结构与算法 队列 第2关 实现一个链接存储的队列
636 0
educoder数据结构与算法 队列 第2关 实现一个链接存储的队列
|
自然语言处理 算法 Python
Python数据结构与算法(3)---统计可散列的对象Counter
Python数据结构与算法(3)---统计可散列的对象Counter
133 1
Python数据结构与算法(3)---统计可散列的对象Counter