基于双层优化的微电网系统规划设计方法(Matlab代码实现)

简介: 基于双层优化的微电网系统规划设计方法(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 微电网系统结构

1.2 微电网系统双层规划设计结构

1.3 双层优化模型

1.4 上层容量优化模型

1.5 下层调度优化模型

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码、数据、文章讲解


image.gif

💥1 概述

文献来源:

image.gif

摘要:规划设计是微电网系统核心技术体系之一。从分布式电源的综合优化(组合优化、容量优化)和分布式电源间的调度优化两个方面对其展开研究。根据分布式电源特性,提出了适用于并网型微电网系统和独立型微电网系统的双层优化规划设计模型。上层优化采用综合目标计算系统最优配置;下层优化采用混合整数线性规划算法(MILP)计算系统最优运行方案。运用所建立模型,分别针对并网型和独立型微电网系统作了案例计算,验证了所提方法的正确性。

关键词:微电网;双层优化;规划设计;最优配置;MILP;

微电网系统可将多种类型的分布式发电单元组合在一起,有效发挥单一能源系统的优点,实现多

种能源互补,提高整个微电网系统的效率、能源利用率和供电可靠性。根据其是否与常规电网相连接,微电网可以分为并网型微电网和独立型微电网[1]。微电网接入配电网并网运行,不仅可以充分利用微电网内部的绿色可再生能源,还可以提高整个电网的安全性,是中国建成智能电网的重要环节。同时,独立型微电网系统是解决偏远地区和海岛供电的有效手段之一[2-3]。

规划设计是微电网系统核心技术体系之一,它直接关系到系统经济性、环保性和可靠性[4]。在规

划设计的过程中,需要考虑可再生能源的间歇性、灵活多变的系统组合方案和不同系统运行控制策

略,这些因素的存在使微电网系统优化规划变得较为复杂[5-7]。本文将从分布式电源的综合优化(优化组合、优化容量)和分布式电源间的优化调度两个方面出发,对微电网系统优化规划展开研究。围绕微电网系统的优化规划,很多学者已对其开展了一定研究,提出一系列运行控制策略和优化规划方法。微电网系统运行控制策略可分为固定策略和优化策略,固定策略以事先拟定的优先级制定系统运行规则,优化策略则根据相应目标函数求解系统最优运行规则[8]。在美国国家新能源实验室(NERL)开发的 Hybrid2[9]仿真软件中,提出十几种独立微电网系统固定运行策略,包括平滑功率策略(Traditional Power Smoothing, TPS)、硬充电策略(Hard Cycle Charge, HCC)等,较为全面地概括了独立微电网系统固定策略控制模式。在该软件中所提出的硬充电策略的基础上,文献[10]提出了一种适用于风光柴储独立微电网系统的修正硬充电策略,可有效延长蓄电池使用寿命。在微电网系统的优化调度方面,通常选取系统调度周期内运行费用最小为优化目标,文献[11-12]研究了独立微电网系统的优化调度方法,文献[13]提出了并网型风光柴微电网系统的微电网动态经济调度模型。

1.1 微电网系统结构

本文研究的微电网系统结构如图1所示。风力发电机、光伏发电和储能系统等通过各自的变流器接

入交流微电网系统,并通过公共连接点(PCC)与配电网连接,组成并网型微电网。通过对该微电网的控制,可实现微电网的孤岛和并网运行。柴油发电机采用同步发电机发电,直接并入交流微电网。在优化规划设计中,忽略线路阻抗引起的损耗。

image.gif

1.2 微电网系统双层规划设计结构

本文采用双层优化规划方法对微电网系统进行优化,上层为容量优化模块,用于寻找系统最优

配置,包括系统各设备类型、台数和容量,下层为调度优化模块,用于计算系统最优运行方案。

双层优化含有两个层次,上层决策结果一般会影响下层目标和约束条件,而下层则将决策结果反

馈给上层,从而实现上下层决策的相互作用,如图2 所示为本文双层优化逻辑图。

image.gif

1.3 双层优化模型

Bracken J McGill J T 1973 年最早提出了多层规划的概念,已解决多层规划/优化问题,双层

规划是多层规划的特例。双层规划在输电系统、无功优化、配电系统优化规划等领域已有研究报道。数学上双层优化可描述为

                     

                   

式中:F()为上层优化的目标函数;x 为上层优化的决策向量;G()为上层优化所需满足的约束条件;f()为下层优化的目标函数;y 为下层优化的决策向量;g()为下层优化所需满足的约束条件。

1.4 上层容量优化模型

image.gif

image.gif

1.5 下层调度优化模型

image.gif

📚2 运行结果

image.gif

image.gif

image.gif

image.gif

image.gif

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]刘振国,胡亚平,陈炯聪,余南华.基于双层优化的微电网系统规划设计方法[J].电力系统保护与控制,2015,43(08):124-133.

🌈4 Matlab代码、数据、文章讲解

链接:https://pan.baidu.com/s/1eorVkxp6YZ6jpO5id-Ot8A 

提取码:p7jv

--来自百度网盘超级会员V3的分享

相关文章
|
1月前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
3月前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
4月前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
102 4
|
6月前
|
计算机视觉
【图像处理】基于灰度矩的亚像素边缘检测方法理论及MATLAB实现
基于灰度矩的亚像素边缘检测方法,包括理论基础和MATLAB实现,通过计算图像的灰度矩来精确定位边缘位置,并提供了详细的MATLAB代码和实验结果图。
170 6
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
136 0
|
7月前
|
算法 安全 数据挖掘
随机数生成方法及其在Matlab中的应用
随机数生成方法及其在Matlab中的应用