【机器学习项目实战10例】(八):基于KMeans、DBSCAN新闻聚类分群

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 【机器学习项目实战10例】(八):基于KMeans、DBSCAN新闻聚类分群

一、新闻聚类分群

1、✌ 导入相关库
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
import jieba

sklearn.feature_extraction.text import CountVectorizer:文本向量化

from sklearn.cluster import KMeans:KMeans模型

from sklearn.cluster import DBSCAN:DBSCAN模型

from sklearn.metrics.pairwise import cosine_similarity:余弦相似度

2、✌ 读取数据
data=pd.read_excel('news.xls')
data.head()

3、✌ 中文分词
words=[]
for i,row in data.iterrows():
    word=jieba.cut(row['标题'])
    result=' '.join(word)
    words.append(result)
words

将数据中的标题栏利用jieba库进行分词,为后面搭建词频矩阵使用

4、✌ 文本向量化:建立词频矩阵
from sklearn.feature_extraction.text import CountVectorizer
vect=CountVectorizer()
x=vect.fit_transform(words)
x=x.toarray()
x

Python在处理数据需要数值型数据,需要将上文的文本数据转化为词频矩阵,可以利用CountVectorizer函数

他的原理是将words中的每个词去重以及出去无意义的词,进行编号,然后对应每个原文本计数该次出现的次数

5、✌ 构造特征矩阵
words_name=vect.get_feature_names()
df=pd.DataFrame(x,columns=words_name)
df

词频矩阵处理好,需要构造特征向量为下面模型使用

6、✌ 模型搭建
(1)、✌ 通过KMeans算法进行聚类分群
from sklearn.cluster import KMeans
kms=KMeans(n_clusters=10,random_state=0)
label_kms=kms.fit_predict(df)
label_kms
import numpy as np
words_array=np.array(words)
words_array[label_kms==2]

(2)、✌ 通过DBSCAN算法进行聚类分群
from sklearn.cluster import DBSCAN
dbs=DBSCAN(eps=1,min_samples=3)
label_dbs=dbs.fit_predict(df)
label_dbs

这里我们发现分类出的标签有问题,全部都是-1,说明,全部都是离散点,因为词频处理后,特征过多,导致样本点之间距离较远,从而产生离群点,因此对于新闻文本而言,KMeans算法的聚类效果很好,而DBSCAN的效果较差

这也说明了对于特征较多的数据,KMeans算法的聚类效果要好于DBSCAN算法的聚类效果。

7、✌ 利用余弦相似度进行模型优化
from sklearn.metrics.pairwise import cosine_similarity
df_cs=cosine_similarity(df)
kms_cs=KMeans(n_clusters=10,random_state=0)
label_kms_cs=kms_cs.fit_predict(df_cs)
label_kms_cs

余弦相似性通过测量两个向量的夹角的余弦值来度量它们之间的相似性。0度角的余弦值是1,而其他任何角度的余弦值都不大于1;并且其最小值是-1。从而两个向量之间的角度的余弦值确定两个向量是否大致指向相同的方向。两个向量有相同的指向时,余弦相似度的值为1;两个向量夹角为90°时,余弦相似度的值为0;两个向量指向完全相反的方向时,余弦相似度的值为-1。这结果是与向量的长度无关的,仅仅与向量的指向方向相关。余弦相似度通常用于正空间,因此给出的值为-1到1之间。

当文本出现重复值时,可以将原词频矩阵的数据进行余弦相似度处理,处理后的特征矩阵再带入模型。


目录
相关文章
|
8月前
|
机器学习/深度学习 算法 数据挖掘
讲解机器学习中的 K-均值聚类算法及其优缺点。
讲解机器学习中的 K-均值聚类算法及其优缺点。
|
8月前
|
机器学习/深度学习 算法 数据挖掘
机器学习中的 K-均值聚类算法及其优缺点
机器学习中的 K-均值聚类算法及其优缺点
175 0
|
7月前
|
机器学习/深度学习 人工智能 TensorFlow
机器学习项目实战:使用Python实现图像识别
在AI时代,Python借助TensorFlow和Keras实现图像识别,尤其在监控、驾驶、医疗等领域有广泛应用。本文通过构建CNN模型识别MNIST手写数字,展示图像识别流程:安装库→加载预处理数据→构建模型→训练→评估。简单项目为深度学习入门提供基础,为进一步探索复杂场景打下基础。
720 5
|
7月前
|
机器学习/深度学习 数据采集 算法
【机器学习】DBSCAN算法
【机器学习】DBSCAN算法
194 0
【机器学习】DBSCAN算法
|
7月前
|
机器学习/深度学习 算法 数据挖掘
机器学习——DBSCAN 聚类算法
【6月更文挑战第8天】DBSCAN是一种基于密度的无监督聚类算法,能处理不规则形状的簇和噪声数据,无需预设簇数量。其优点包括自动发现簇结构和对噪声的鲁棒性。示例代码展示了其基本用法。然而,DBSCAN对参数选择敏感,计算效率受大规模数据影响。为改善这些问题,研究方向包括参数自适应和并行化实现。DBSCAN在图像分析、数据分析等领域有广泛应用,通过持续改进,将在未来保持重要地位。
96 2
|
7月前
|
机器学习/深度学习 算法 数据挖掘
机器学习之聚类——DBSCAN演绎组织的形成
机器学习之聚类——DBSCAN演绎组织的形成
40 0
|
8月前
|
机器学习/深度学习 算法 数据挖掘
讲解机器学习中的 K-均值聚类算法及其优缺点。
讲解机器学习中的 K-均值聚类算法及其优缺点。
158 0
|
8月前
|
机器学习/深度学习 算法 数据挖掘
Python | 机器学习之聚类算法
Python | 机器学习之聚类算法
369 0
|
8月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
265 14
|
8月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)