基于64QAM调制解调的LDPC编译码算法误码率matlab仿真

简介: 基于64QAM调制解调的LDPC编译码算法误码率matlab仿真

1.算法描述

   LDPC译码从译码算法的实现角度可以将译码类型分为硬判决译码和软判决译码两种类型。其中,硬判决译码方式实现过程较为简单,其通过一个预先设置的阈值对译码信息进行判决,如果大于阈值则判决输出“1”,否则判决输出“0”。软件判决译码方式则根据码元错误概率最小的方式进行译码。因此,软件判决译码方式具有更优的译码性能。

  BP译码算法是一种基于概率域的译码算法。其译码步骤如下所示:

1.png
2.png
3.png

   虽然基于对数域的BP译码算法在一定程度上降低了BP译码算法的复杂度,但是由于其涉及到正切等运算。随着码长的增加,LLR-BP译码算法的复杂依旧较大。由此产生了MS最小和译码算法。 最小和译码算法的步骤如下:

4.png
5.png

2.仿真效果预览
matlab2022a仿真结果如下:

6.png

3.MATLAB核心程序

load H.mat;
max_iter=25;
L_frame=size(G,1);
n_frame=200;
start=0;
step=2;
finish=10;
r=size(G,1)/size(G,2);
M=6;
Es=42;   % 一个64QAM符号能量 也是信号功率 
Eb=Es/M;
plot_pe=[];
Q=1;
 
%  err_list_index=1;  % used by test
axis_EbN0=start:step:finish;
%******************************************************
for EbN0=start:step:finish;
    Liner_EbN0=10^(EbN0/10);
    pe_number=0;
    variance=0.5*(Eb/Liner_EbN0)/r;  % 噪声方差, 来源于a^2/(2*delta^2)=Liner_EbN0,a^2信息幅值的平方即比特能量, 2*delta^2=N0.    N0/r得到编码后的噪声功率谱密度
    for number_frame=1:1:n_frame         % variance是单独加在同相(正交相)的噪声功率普密度
       
        
        x_msg = (sign(randn(1,size(G,1)))+1)/2; % random bits
        x_code_msg= mod(x_msg*G,2); % coding 
        in=x_code_msg;
        
 
      
        x_tx_msg= QAM64m(in); % 16QAM modulation 
        
        real_tx=real(x_tx_msg);  imag_tx=imag(x_tx_msg);
        waveform= x_tx_msg+sqrt(variance)*( randn(size(real_tx)) + randn(size(imag_tx))*i ) ; % AWGN transmission 
        
        [f0,f1]=QAM64d(waveform,2*variance);
        LLR=log(f0./(f1+eps));
        [z_hat, success, k] = log_ldpc_decode(H,LLR,max_iter);; % likelihoods
        
      
        x_dec_msg = z_hat(1:size(G,1)); %  码率1/2 时使用
        
 
        
        pe_number=pe_number+sum(x_msg~=x_dec_msg);
        
        current_time=fix(clock);
       fprintf('i am working %g,total(%g)      %g年  %g月  %g日  %g时  %g分  %g秒\n\n',Q,(((finish-start)/step)+1)*n_frame,current_time(1),current_time(2),current_time(3),current_time(4),current_time(5),current_time(6))
        Q=Q+1;
        fprintf('\n\n')
        
    end
    pe=pe_number/(L_frame*n_frame);
    plot_pe=[plot_pe,pe];
end
 
figure;
semilogy(axis_EbN0,plot_pe,'b*-')
 
xlabel('Eb/N0 信号功率/噪声功率(db)')
ylabel('BER')
title('误码率')
grid on
A_070
相关文章
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
139 80
|
4天前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
27 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
2天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
6天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
14天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
8天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
28天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。