基于64QAM调制解调的LDPC编译码算法误码率matlab仿真

简介: 基于64QAM调制解调的LDPC编译码算法误码率matlab仿真

1.算法描述

   LDPC译码从译码算法的实现角度可以将译码类型分为硬判决译码和软判决译码两种类型。其中,硬判决译码方式实现过程较为简单,其通过一个预先设置的阈值对译码信息进行判决,如果大于阈值则判决输出“1”,否则判决输出“0”。软件判决译码方式则根据码元错误概率最小的方式进行译码。因此,软件判决译码方式具有更优的译码性能。

  BP译码算法是一种基于概率域的译码算法。其译码步骤如下所示:

1.png
2.png
3.png

   虽然基于对数域的BP译码算法在一定程度上降低了BP译码算法的复杂度,但是由于其涉及到正切等运算。随着码长的增加,LLR-BP译码算法的复杂依旧较大。由此产生了MS最小和译码算法。 最小和译码算法的步骤如下:

4.png
5.png

2.仿真效果预览
matlab2022a仿真结果如下:

6.png

3.MATLAB核心程序

load H.mat;
max_iter=25;
L_frame=size(G,1);
n_frame=200;
start=0;
step=2;
finish=10;
r=size(G,1)/size(G,2);
M=6;
Es=42;   % 一个64QAM符号能量 也是信号功率 
Eb=Es/M;
plot_pe=[];
Q=1;
 
%  err_list_index=1;  % used by test
axis_EbN0=start:step:finish;
%******************************************************
for EbN0=start:step:finish;
    Liner_EbN0=10^(EbN0/10);
    pe_number=0;
    variance=0.5*(Eb/Liner_EbN0)/r;  % 噪声方差, 来源于a^2/(2*delta^2)=Liner_EbN0,a^2信息幅值的平方即比特能量, 2*delta^2=N0.    N0/r得到编码后的噪声功率谱密度
    for number_frame=1:1:n_frame         % variance是单独加在同相(正交相)的噪声功率普密度
       
        
        x_msg = (sign(randn(1,size(G,1)))+1)/2; % random bits
        x_code_msg= mod(x_msg*G,2); % coding 
        in=x_code_msg;
        
 
      
        x_tx_msg= QAM64m(in); % 16QAM modulation 
        
        real_tx=real(x_tx_msg);  imag_tx=imag(x_tx_msg);
        waveform= x_tx_msg+sqrt(variance)*( randn(size(real_tx)) + randn(size(imag_tx))*i ) ; % AWGN transmission 
        
        [f0,f1]=QAM64d(waveform,2*variance);
        LLR=log(f0./(f1+eps));
        [z_hat, success, k] = log_ldpc_decode(H,LLR,max_iter);; % likelihoods
        
      
        x_dec_msg = z_hat(1:size(G,1)); %  码率1/2 时使用
        
 
        
        pe_number=pe_number+sum(x_msg~=x_dec_msg);
        
        current_time=fix(clock);
       fprintf('i am working %g,total(%g)      %g年  %g月  %g日  %g时  %g分  %g秒\n\n',Q,(((finish-start)/step)+1)*n_frame,current_time(1),current_time(2),current_time(3),current_time(4),current_time(5),current_time(6))
        Q=Q+1;
        fprintf('\n\n')
        
    end
    pe=pe_number/(L_frame*n_frame);
    plot_pe=[plot_pe,pe];
end
 
figure;
semilogy(axis_EbN0,plot_pe,'b*-')
 
xlabel('Eb/N0 信号功率/噪声功率(db)')
ylabel('BER')
title('误码率')
grid on
A_070
相关文章
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
12天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
12天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
12天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
31 3
|
23天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章