m基于遗传优化算法的公式参数拟合matlab仿真

简介: m基于遗传优化算法的公式参数拟合matlab仿真

1.算法描述
遗传算法的原理

   遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。

   其主要步骤如下:

1.初始化

   选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。

   通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。

2.选择

  根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。

给出目标函数f,则f(bi)称为个体bi的适应度。以

为选中bi为下一代个体的次数。

显然.从式(3—86)可知:

(1)适应度较高的个体,繁殖下一代的数目较多。

(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。

这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。

3.交叉

   对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。

拟合公式:

1.png

该公式经过化简实部、虚部分离得:

2.png

公式化简

3.png
4.png

令:

5.png

所以:

6.png

需要拟合的参数有:

7.png

定义GA优化目标函数如下所示:

8.png

2.仿真效果预览
matlab2022a仿真结果如下:

9.png
10.png
11.png
12.png
13.png
14.png

3.MATLAB核心程序

MAXGEN = 2000;
NIND   = 400;
Chrom  = crtbp(NIND,14*10);
%14个变量的区间
Areas  = [0   ,0   ,0   ,0   ,0   ,0    ,0   ,0   ,0   ,0    ,0   ,0   ,0   ,0;
          10  ,1   ,100 ,500 ,100 ,5e8  ,1   ,1   ,1   ,1    ,2e11,2e8 ,1e4 ,1e2];
 
FieldD = [rep([10],[1,14]);Areas;rep([0;0;0;0],[1,14])];
 
epls_inf_NIND    = zeros(NIND,1);
deltas_NIND      = zeros(NIND,1);
delta_epls1_NIND = zeros(NIND,1);
delta_epls2_NIND = zeros(NIND,1);
delta_epls3_NIND = zeros(NIND,1);
delta_epls4_NIND = zeros(NIND,1);
beta1_NIND       = zeros(NIND,1);
beta2_NIND       = zeros(NIND,1);
beta3_NIND       = zeros(NIND,1);
beta4_NIND       = zeros(NIND,1);
fc1_NIND         = zeros(NIND,1);
fc2_NIND         = zeros(NIND,1);
fc3_NIND         = zeros(NIND,1);
fc4_NIND         = zeros(NIND,1);
 
epls_inf         = zeros(MAXGEN,1);
deltas           = zeros(MAXGEN,1);
delta_epls1      = zeros(MAXGEN,1);
delta_epls2      = zeros(MAXGEN,1);
delta_epls3      = zeros(MAXGEN,1);
delta_epls4      = zeros(MAXGEN,1);
beta1            = zeros(MAXGEN,1);
beta2            = zeros(MAXGEN,1);
beta3            = zeros(MAXGEN,1);
beta4            = zeros(MAXGEN,1);
fc1              = zeros(MAXGEN,1);
fc2              = zeros(MAXGEN,1);
fc3              = zeros(MAXGEN,1);
fc4              = zeros(MAXGEN,1);
Error            = zeros(MAXGEN,1);
 
gen              = 0;
 
 
 
for a=1:1:NIND 
    epls_inf_NIND(a)    = epls_inf_0;      
    deltas_NIND(a)      = deltas_0;
    delta_epls1_NIND(a) = delta_epls1_0;
    delta_epls2_NIND(a) = delta_epls2_0;
    delta_epls3_NIND(a) = delta_epls3_0;      
    delta_epls4_NIND(a) = delta_epls4_0;
    beta1_NIND(a)       = beta1_0;
    beta2_NIND(a)       = beta2_0;          
    beta3_NIND(a)       = beta3_0;
    beta4_NIND(a)       = beta4_0;
    fc1_NIND(a)         = fc1_0;      
    fc2_NIND(a)         = fc2_0;
    fc3_NIND(a)         = fc3_0;
    fc4_NIND(a)         = fc4_0;    
    %计算对应的目标值
    [epls_1,epls_2] = func_obj(f,...
                               epls_inf_NIND(a),...
                               deltas_NIND(a),...
                               delta_epls1_NIND(a),delta_epls2_NIND(a),delta_epls3_NIND(a),delta_epls4_NIND(a),...
                               beta1_NIND(a),beta2_NIND(a),beta3_NIND(a),beta4_NIND(a),...
                               fc1_NIND(a),fc2_NIND(a),fc3_NIND(a),fc4_NIND(a));
    for m = 1:length(f)
        tmps1(m) = ((e1(m)-epls_1(m))^2)/(e1(m)^2);               
        tmps2(m) = ((e2(m)-epls_2(m))^2)/(e2(m)^2);    
    end
    E = sum(tmps1)+sum(tmps2);
    J(a,1)  = E;
end
 
Objv  = (J+eps);
gen   = 0; 
 
while gen < MAXGEN;   
      gen
      FitnV=ranking(Objv);    
      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,0.9);   
      Selch=mut( Selch,0.01);   
      phen1=bs2rv(Selch,FieldD);   
      for a=1:1:NIND  
          if  gen == 1
              epls_inf_NIND(a)    = epls_inf_0;      
              deltas_NIND(a)      = deltas_0;
              delta_epls1_NIND(a) = delta_epls1_0;
              delta_epls2_NIND(a) = delta_epls2_0;
              delta_epls3_NIND(a) = delta_epls3_0;      
              delta_epls4_NIND(a) = delta_epls4_0;
              beta1_NIND(a)       = beta1_0;
              beta2_NIND(a)       = beta2_0;          
              beta3_NIND(a)       = beta3_0;
              beta4_NIND(a)       = beta4_0;
              fc1_NIND(a)         = fc1_0;      
              fc2_NIND(a)         = fc2_0;
              fc3_NIND(a)         = fc3_0;
              fc4_NIND(a)         = fc4_0;           
          else
              epls_inf_NIND(a)    = phen1(a,1);      
              deltas_NIND(a)      = phen1(a,2);
              delta_epls1_NIND(a) = phen1(a,3);
              delta_epls2_NIND(a) = phen1(a,4);
              delta_epls3_NIND(a) = phen1(a,5);      
              delta_epls4_NIND(a) = phen1(a,6);
              beta1_NIND(a)       = phen1(a,7);
              beta2_NIND(a)       = phen1(a,8);          
              beta3_NIND(a)       = phen1(a,9);
              beta4_NIND(a)       = phen1(a,10);
              fc1_NIND(a)         = phen1(a,11);      
              fc2_NIND(a)         = phen1(a,12);
              fc3_NIND(a)         = phen1(a,13);
              fc4_NIND(a)         = phen1(a,14);  
          end
          
          %计算对应的目标值
          [epls_1,epls_2] = func_obj(f,...
                                     epls_inf_NIND(a),...
                                     deltas_NIND(a),...
                                     delta_epls1_NIND(a),delta_epls2_NIND(a),delta_epls3_NIND(a),delta_epls4_NIND(a),...
                                     beta1_NIND(a),beta2_NIND(a),beta3_NIND(a),beta4_NIND(a),...
                                     fc1_NIND(a),fc2_NIND(a),fc3_NIND(a),fc4_NIND(a));
          for m = 1:length(f)
              tmps1(m) = ((e1(m)-epls_1(m))^2)/(e1(m)^2);               
              tmps2(m) = ((e2(m)-epls_2(m))^2)/(e2(m)^2);    
          end
          E = sum(tmps1)+sum(tmps2);
          JJ(a,1)  = E;
      end 
      Objvsel=(JJ+eps);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 
 
      %保存参数收敛过程和误差收敛过程以及函数值拟合结论
      epls_inf(gen)         = mean(epls_inf_NIND);
      deltas(gen)           = mean(deltas_NIND);
      delta_epls1(gen)      = mean(delta_epls1_NIND);
      delta_epls2(gen)      = mean(delta_epls2_NIND);
      delta_epls3(gen)      = mean(delta_epls3_NIND);
      delta_epls4(gen)      = mean(delta_epls4_NIND);
      beta1(gen)            = mean(beta1_NIND);
      beta2(gen)            = mean(beta2_NIND);
      beta3(gen)            = mean(beta3_NIND);
      beta4(gen)            = mean(beta4_NIND);
      fc1(gen)              = mean(fc1_NIND);
      fc2(gen)              = mean(fc2_NIND);
      fc3(gen)              = mean(fc3_NIND);
      fc4(gen)              = mean(fc4_NIND);
      Error(gen)            = mean(JJ);
end 
 
 
MIN=min(Objv); 
for ttt=1:1:size(Objv)     
    if Objv(ttt)<=MIN         
       tt=ttt;         
       break;     
    end
end
 
 
epls_inf_best    = epls_inf_NIND(tt);      
deltas_best      = deltas_NIND(tt);
delta_epls1_best = delta_epls1_NIND(tt);
delta_epls2_best = delta_epls2_NIND(tt);
delta_epls3_best = delta_epls3_NIND(tt);      
delta_epls4_best = delta_epls4_NIND(tt);
beta1_best       = beta1_NIND(tt);
beta2_best       = beta2_NIND(tt);          
beta3_best       = beta3_NIND(tt);
beta4_best       = beta4_NIND(tt);
fc1_best         = fc1_NIND(tt);      
fc2_best         = fc2_NIND(tt);
fc3_best         = fc3_NIND(tt);
fc4_best         = fc4_NIND(tt);  
 
%计算对应的目标值
[epls_best1,epls_best2] = func_obj(f,...
                                 epls_inf_best,...
                                 deltas_best,...
                                 delta_epls1_best,delta_epls2_best,delta_epls3_best,delta_epls4_best,...
                                 beta1_best,beta2_best,beta3_best,beta4_best,...
                                 fc1_best,fc2_best,fc3_best,fc4_best);
%画图
 
 
figure;
subplot(211);
loglog(e1,'b','linewidth',2);
hold on
loglog(epls_best1,'r','linewidth',2);
legend('原始数据','拟合数据');
subplot(212);
loglog(e2,'b','linewidth',2);
hold on
loglog(epls_best2,'r','linewidth',2);
legend('原始数据','拟合数据');
02_016m
相关文章
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
12天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
12天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
12天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
31 3
|
23天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
29天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。