项目进度管理的算法总结

简介: 笔记

类比估算(自上而下估算法)

适用范围:类比以往的项目在实质上和形式上都非常趋同;在项目初期,当项目资料难以得到时(项目细节掌握少)。特点:简单易行,耗时短、花费小。


参数估算

适用范围:一种基于历史数据和项目参数,使用某种算法来计算成本或工期的估算技术。参数估算是指利用历史数据之间的统计关系和其他变量来估算诸如成本、预算和持续时间等活动参数。


自下而上估算

自下而上估算是一种估算项目持续时间或成本的方法,通过从下到上逐层汇总 WBS 组成部分的估算而得到项目估算。如果无法以合理的可信度对活动持续时间进行估算,则应将活动中的工作进一步细化,然后估算具体的持续时间,接着再汇总这些资源需求估算,得到每个活动的持续时间。活动之间可能存在或不存在会影响资源利用的依赖关系;如果存在,就应该对相应的资源使用方式加以说明,并记录在活动资源需求中。


三点估算

工期=(最乐观+最悲观+4*最可能)/6; 标准差(σ)=(最悲观-最乐观)/6


方差=(标准差)²


时标网络图

画时标网络图时,当活动有多个前序活动时,需把前序活动画完,才能画此活动


依赖关系

外部依赖:外部强制(如外部硬件到货-软件测试;政府环境听证-开工;)+外部选择(外部咨询公司流程梳理、管理咨询-软件测试)


内部依赖:内部强制(打地基-修房子;原型制造好-测试;)+内部选择(软件设计-软件开发)


强制性依赖:硬逻辑关系、硬依赖关系;


选择性依赖:首选逻辑关系、优先逻辑关系、软逻辑关系。


控制进度:压缩工期的方法

赶工,投入更多的资源或增加工作时间,以缩短关键活动的工期;

快速跟进,并行施工,以缩短关键路径的长度;

使用高素质的资源或经验丰富的人员

减小活动范围或降低活动要求

改进方法或技术,以提高生产效率

加强质量管理,及时发现问题;减少返工,从而缩短工期。

速记:“赶快使减改加”


资源平衡与资源平滑

资源平衡:一个资源在同一个时段内被分配至两个或多个活动,即需要资源平衡。经过资源平衡后,可提高资源使用率,但是可能会延迟关键路径。


资源平滑:利用活动的浮动时间,对活动进行调整,以使资源不超出限制或缓解资源冲突。资源平滑不会改变项目的关键路径。


假设情景分析

假设情景分析对可预测的方法做出处理方案的方法,如假如持续下雨,应如何处理。


相关文章
|
3月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
109 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
3月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
140 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
3月前
|
算法 JavaScript 前端开发
第一个算法项目 | JS实现并查集迷宫算法Demo学习
本文是关于使用JavaScript实现并查集迷宫算法的中国象棋demo的学习记录,包括项目运行方法、知识点梳理、代码赏析以及相关CSS样式表文件的介绍。
第一个算法项目 | JS实现并查集迷宫算法Demo学习
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
72 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
3月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
119 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
3月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
105 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3月前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
66 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
4月前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
99 2
|
7月前
|
搜索推荐 算法 前端开发
美食物管理与推荐系统Python+Django网站开发+协同过滤推荐算法应用【计算机课设项目推荐】
美食物管理与推荐系统Python+Django网站开发+协同过滤推荐算法应用【计算机课设项目推荐】
201 4
美食物管理与推荐系统Python+Django网站开发+协同过滤推荐算法应用【计算机课设项目推荐】
|
6月前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目