手把手教学!TensorRT部署实战:YOLOv5的ONNX模型部署

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 手把手教学!TensorRT部署实战:YOLOv5的ONNX模型部署

前言



TensorRT是英伟达官方提供的一个高性能深度学习推理优化库,支持C++Python两种编程语言API。通常情况下深度学习模型部署都会追求效率,尤其是在嵌入式平台上,所以一般会选择使用C++来做部署。


本文将以YOLOv5为例详细介绍如何使用TensorRTC++版本API来部署ONNX模型,使用的TensorRT版本为8.4.1.5,如果使用其他版本可能会存在某些函数与本文描述的不一致。另外,使用TensorRT 7会导致YOLOv5的输出结果与期望不一致,请注意。


导出ONNX模型



YOLOv5使用PyTorch框架进行训练,可以使用官方代码仓库中的export.py脚本把PyTorch模型转换为ONNX模型:


python export.py --weights yolov5x.pt --include onnx --imgsz 640 640


准备模型输入数据



如果想用YOLOv5对图像做目标检测,在将图像输入给模型之前还需要做一定的预处理操作,预处理操作应该与模型训练时所做的操作一致。YOLOv5的输入是RGB格式的3通道图像,图像的每个像素需要除以255来做归一化,并且数据要按照CHW的顺序进行排布。所以YOLOv5的预处理大致可以分为两个步骤:


  1. 将原始输入图像缩放到模型需要的尺寸,比如640x640。这一步需要注意的是,原始图像是按照等比例进行缩放的,如果缩放后的图像某个维度上比目标值小,那么就需要进行填充。举个例子:假设输入图像尺寸为768x576,模型输入尺寸为640x640,按照等比例缩放的原则缩放后的图像尺寸为640x480,那么在y方向上还需要填充640-480=160(分别在图像的顶部和底部各填充80)。来看一下实现代码:

cv::Mat input_image = cv::imread("dog.jpg");
cv::Mat resize_image;
const int model_width = 640;
const int model_height = 640;
const float ratio = std::min(model_width / (input_image.cols * 1.0f),
                              model_height / (input_image.rows * 1.0f));
// 等比例缩放
const int border_width = input_image.cols * ratio;
const int border_height = input_image.rows * ratio;
// 计算偏移值
const int x_offset = (model_width - border_width) / 2;
const int y_offset = (model_height - border_height) / 2;
cv::resize(input_image, resize_image, cv::Size(border_width, border_height));
cv::copyMakeBorder(resize_image, resize_image, y_offset, y_offset, x_offset,
                    x_offset, cv::BORDER_CONSTANT, cv::Scalar(114, 114, 114));
// 转换为RGB格式
cv::cvtColor(resize_image, resize_image, cv::COLOR_BGR2RGB);


图像这样处理后的效果如下图所示,顶部和底部的灰色部分是填充后的效果。


640.jpg


  1. 对图像像素做归一化操作,并按照CHW的顺序进行排布。这一步的操作比较简单,直接看代码吧:

input_blob = new float[model_height * model_width * 3];
const int channels = resize_image.channels();
const int width = resize_image.cols;
const int height = resize_image.rows;
for (int c = 0; c < channels; c++) {
  for (int h = 0; h < height; h++) {
    for (int w = 0; w < width; w++) {
      input_blob[c * width * height + h * width + w] =
          resize_image.at<cv::Vec3b>(h, w)[c] / 255.0f;
    }
  }
}


ONNX模型部署



1. 模型优化与序列化


要使用TensorRTC++ API来部署模型,首先需要包含头文件NvInfer.h


#include "NvInfer.h"


TensorRT所有的编程接口都被放在命名空间nvinfer1中,并且都以字母I为前缀,比如ILoggerIBuilder等。使用TensorRT部署模型首先需要创建一个IBuilder对象,创建之前还要先实例化ILogger接口:


class MyLogger : public nvinfer1::ILogger {
 public:
  explicit MyLogger(nvinfer1::ILogger::Severity severity =
                        nvinfer1::ILogger::Severity::kWARNING)
      : severity_(severity) {}
  void log(nvinfer1::ILogger::Severity severity,
           const char *msg) noexcept override {
    if (severity <= severity_) {
      std::cerr << msg << std::endl;
    }
  }
  nvinfer1::ILogger::Severity severity_;
};


上面的代码默认会捕获级别大于等于WARNING的日志信息并在终端输出。实例化ILogger接口后,就可以创建IBuilder对象:


MyLogger logger;
nvinfer1::IBuilder *builder = nvinfer1::createInferBuilder(logger);


创建IBuilder对象后,优化一个模型的第一步是要构建模型的网络结构。

const uint32_t explicit_batch = 1U << static_cast<uint32_t>(
          nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
nvinfer1::INetworkDefinition *network = builder->createNetworkV2(explicit_batch);


模型的网络结构有两种构建方式,一种是使用TensorRTAPI一层一层地去搭建,这种方式比较麻烦;另外一种是直接从ONNX模型中解析出模型的网络结构,这需要ONNX解析器来完成。由于我们已经有现成的ONNX模型了,所以选择第二种方式。TensorRTONNX解析器接口被封装在头文件NvOnnxParser.h中,命名空间为nvonnxparser。创建ONNX解析器对象并加载模型的代码如下:


const std::string onnx_model = "yolov5m.onnx";
nvonnxparser::IParser *parser = nvonnxparser::createParser(*network, logger);
parser->parseFromFile(model_path.c_str(),
    static_cast<int>(nvinfer1::ILogger::Severity::kERROR))
// 如果有错误则输出错误信息
for (int32_t i = 0; i < parser->getNbErrors(); ++i) {
    std::cout << parser->getError(i)->desc() << std::endl;
}


模型解析成功后,需要创建一个IBuilderConfig对象来告诉TensorRT该如何对模型进行优化。这个接口定义了很多属性,其中最重要的一个属性是工作空间的最大容量。在网络层实现过程中通常会需要一些临时的工作空间,这个属性会限制最大能申请的工作空间的容量,如果容量不够的话会导致该网络层不能成功实现而导致错误。另外,还可以通过这个对象设置模型的数据精度。TensorRT默认的数据精度为FP32,我们还可以设置FP16或者INT8,前提是该硬件平台支持这种数据精度。


nvinfer1::IBuilderConfig *config = builder->createBuilderConfig();
config->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, 1U << 25);
if (builder->platformHasFastFp16()) {
  config->setFlag(nvinfer1::BuilderFlag::kFP16);
}


设置IBuilderConfig属性后,就可以启动优化引擎对模型进行优化了,这个过程需要一定的时间,在嵌入式平台上可能会比较久一点。经过TensorRT优化后的序列化模型被保存到IHostMemory对象中,我们可以将其保存到磁盘中,下次使用时直接加载这个经过优化的模型即可,这样就可以省去漫长的等待模型优化的过程。我一般习惯把序列化模型保存到一个后缀为.engine的文件中。


nvinfer1::IHostMemory *serialized_model =
      builder->buildSerializedNetwork(*network, *config);
// 将模型序列化到engine文件中
std::stringstream engine_file_stream;
engine_file_stream.seekg(0, engine_file_stream.beg);
engine_file_stream.write(static_cast<const char *>(serialized_model->data()),
                        serialized_model->size());
const std::string engine_file_path = "yolov5m.engine";
std::ofstream out_file(engine_file_path);
assert(out_file.is_open());
out_file << engine_file_stream.rdbuf();
out_file.close();


由于IHostMemory对象保存了模型所有的信息,所以前面创建的IBuilderIParser等对象已经不再需要了,可以通过delete进行释放。


delete config;
delete parser;
delete network;
delete builder;


IHostMemory对象用完后也可以通过delete进行释放。


2. 模型反序列化


通过上一步得到优化后的序列化模型后,如果要用模型进行推理,那么还需要创建一个IRuntime接口的实例,然后通过其模型反序列化接口去创建一个ICudaEngine对象:


nvinfer1::IRuntime *runtime = nvinfer1::createInferRuntime(logger);
nvinfer1::ICudaEngine *engine = runtime->deserializeCudaEngine(
    serialized_model->data(), serialized_model->size());
delete serialized_model;
delete runtime;


如果是直接从磁盘中加载.engine文件也是差不多的步骤,首先从.engine文件中把模型加载到内存中,然后再通过IRuntime接口对模型进行反序列化即可。


const std::string engine_file_path = "yolov5m.engine";
std::stringstream engine_file_stream;
engine_file_stream.seekg(0, engine_file_stream.beg);
std::ifstream ifs(engine_file_path);
engine_file_stream << ifs.rdbuf();
ifs.close();
engine_file_stream.seekg(0, std::ios::end);
const int model_size = engine_file_stream.tellg();
engine_file_stream.seekg(0, std::ios::beg);
void *model_mem = malloc(model_size);
engine_file_stream.read(static_cast<char *>(model_mem), model_size);
nvinfer1::IRuntime *runtime = nvinfer1::createInferRuntime(logger);
nvinfer1::ICudaEngine *engine = runtime->deserializeCudaEngine(model_mem, model_size);
delete runtime;
free(model_mem);

3. 模型推理

ICudaEngine对象中存放着经过TensorRT优化后的模型,不过如果要用模型进行推理则还需要通过createExecutionContext()函数去创建一个IExecutionContext对象来管理推理的过程:


nvinfer1::IExecutionContext *context = engine->createExecutionContext();


现在让我们先来看一下使用TensorRT框架进行模型推理的完整流程:

640.png

  1. 对输入图像数据做与模型训练时一样的预处理操作。

  2. 把模型的输入数据从CPU拷贝到GPU中。
  3. 调用模型推理接口进行推理。
  4. 把模型的输出数据从GPU拷贝到CPU中。
  5. 对模型的输出结果进行解析,进行必要的后处理后得到最终的结果。


由于模型的推理是在GPU上进行的,所以会存在搬运输入、输出数据的操作,因此有必要在GPU上创建内存区域用于存放输入、输出数据。模型输入、输出的尺寸可以通过ICudaEngine对象的接口来获取,根据这些信息我们可以先为模型分配输入、输出缓存区。

void *buffers[2];
// 获取模型输入尺寸并分配GPU内存
nvinfer1::Dims input_dim = engine->getBindingDimensions(0);
int input_size = 1;
for (int j = 0; j < input_dim.nbDims; ++j) {
  input_size *= input_dim.d[j];
}
cudaMalloc(&buffers[0], input_size * sizeof(float));
// 获取模型输出尺寸并分配GPU内存
nvinfer1::Dims output_dim = engine->getBindingDimensions(1);
int output_size = 1;
for (int j = 0; j < output_dim.nbDims; ++j) {
  output_size *= output_dim.d[j];
}
cudaMalloc(&buffers[1], output_size * sizeof(float));
// 给模型输出数据分配相应的CPU内存
float *output_buffer = new float[output_size]();


到这一步,如果你的输入数据已经准备好了,那么就可以调用TensorRT的接口进行推理了。通常情况下,我们会调用IExecutionContext对象的enqueueV2()函数进行异步地推理操作,该函数的第二个参数为CUDA流对象,第三个参数为CUDA事件对象,这个事件表示该执行流中输入数据已经使用完,可以挪作他用了。如果对CUDA的流和事件不了解,可以参考我之前写的这篇文章


cudaStream_t stream;
cudaStreamCreate(&stream);
// 拷贝输入数据
cudaMemcpyAsync(buffers[0], input_blob,input_size * sizeof(float),
                  cudaMemcpyHostToDevice, stream);
// 执行推理
context->enqueueV2(buffers, stream, nullptr);
// 拷贝输出数据
cudaMemcpyAsync(output_buffer, buffers[1],output_size * sizeof(float),
                  cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);

模型推理成功后,其输出数据被拷贝到output_buffer中,接下来我们只需按照YOLOv5的输出数据排布规则去解析即可。


4. 小结


在介绍如何解析YOLOv5输出数据之前,我们先来总结一下用TensorRT框架部署ONNX模型的基本流程。

640.png


如上图所示,主要步骤如下:


  1. 实例化Logger;
  2. 创建Builder;
  3. 创建Network;
  4. 使用Parser解析ONNX模型,构建Network
  5. 设置Config参数;
  6. 优化网络,序列化模型;
  7. 反序列化模型;
  8. 拷贝模型输入数据(HostToDevice),执行模型推理;
  9. 拷贝模型输出数据(DeviceToHost),解析结果。

解析模型输出结果



YOLOv53个检测头,如果模型输入尺寸为640x640,那么这3个检测头分别在80x8040x4020x20的特征图上做检测。让我们先用Netron工具来看一下YOLOv5 ONNX模型的结构,可以看到,YOLOv5的后处理操作已经被包含在模型中了(如下图红色框内所示),3个检测头分支的结果最终被组合成一个张量作为输出。

640.png

yolov5m


YOLOv53个检测头一共有(80x80+40x40+20x20)x3=25200个输出单元格,每个单元格输出x,y,w,h,objectness5项再加80个类别的置信度总共85项内容。经过后处理操作后,目标的坐标值已经被恢复到以640x640为参考的尺寸,如果需要恢复到原始图像尺寸,只需要除以预处理时的缩放因子即可。这里有个问题需要注意:由于在做预处理的时候图像做了填充,原始图像并不是被缩放成640x640而是640x480,使得输入给模型的图像的顶部被填充了一块高度为80的区域,所以在恢复到原始尺寸之前,需要把目标的y坐标减去偏移量80

640.png


详细的解析代码如下:


float *ptr = output_buffer;
for (int i = 0; i < 25200; ++i) {
  const float objectness = ptr[4];
  if (objectness >= 0.45f) {
    const int label =
        std::max_element(ptr + 5, ptr + 85) - (ptr + 5);
    const float confidence = ptr[5 + label] * objectness;
    if (confidence >= 0.25f) {
      const float bx = ptr[0];
      const float by = ptr[1];
      const float bw = ptr[2];
      const float bh = ptr[3];
      Object obj;
      // 这里要减掉偏移值
      obj.box.x = (bx - bw * 0.5f - x_offset) / ratio;
      obj.box.y = (by - bh * 0.5f - y_offset) / ratio;
      obj.box.width = bw / ratio;
      obj.box.height = bh / ratio;
      obj.label = label;
      obj.confidence = confidence;
      objs->push_back(std::move(obj));
    }
  }
  ptr += 85;
}  // i loop


对解析出的目标做非极大值抑制(NMS)操作后,检测结果如下图所示:


640.jpg


总结



本文以YOLOv5为例通过大量的代码一步步讲解如何使用TensorRT框架部署ONNX模型,主要目的是希望读者能够通过本文学习到TensorRT模型部署的基本流程,比如如何准备输入数据、如何调用API用模型做推理、如何解析模型的输出结果。如何部署YOLOv5模型并不是本文的重点,重点是要掌握使用TensorRT部署ONNX模型的基本方法,这样才会有举一反三的效果。

原文首发微信公众号【自动驾驶之心】:一个专注自动驾驶与AI的社区(https://mp.weixin.qq.com/s/NK-0tfm_5KxmOfFHpK5mBA

相关文章
|
编解码 缓存 并行计算
YOLOv5入门实践(4)——手把手教你训练自己的数据集
YOLOv5入门实践(4)——手把手教你训练自己的数据集
2320 0
YOLOv5入门实践(4)——手把手教你训练自己的数据集
|
4月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二:基于YOLOV5的CPU版本部署openvino
本文档详细记录了YOLOv5模型在CPU环境下的部署流程及性能优化方法。首先,通过设置Python虚拟环境并安装PyTorch等依赖库,在CPU环境下成功运行YOLOv5模型的示例程序。随后,介绍了如何将PyTorch模型转换为ONNX格式,并进一步利用OpenVINO工具包进行优化,最终实现模型在CPU上的高效运行。通过OpenVINO的加速,即使是在没有GPU支持的情况下,模型的推理速度也从约20帧每秒提高到了50多帧每秒,显著提升了性能。此文档对希望在资源受限设备上部署高性能计算机视觉模型的研究人员和工程师具有较高的参考价值。
|
机器学习/深度学习 人工智能 计算机视觉
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
616 0
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
|
机器学习/深度学习 移动开发 数据挖掘
如何用CSharpOpenCv集成Yolov3的模型
如何用CSharpOpenCv集成Yolov3的模型
321 0
如何用CSharpOpenCv集成Yolov3的模型
|
机器学习/深度学习 并行计算 计算机视觉
|
缓存 计算机视觉
|
缓存 PyTorch API
手把手教你使用LabVIEW TensorRT实现图像分类实战下(含源码)
手把手教你使用LabVIEW TensorRT实现图像分类实战下
230 0
手把手教你使用LabVIEW TensorRT实现图像分类实战下(含源码)
|
机器学习/深度学习 人工智能 自动驾驶
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(下)
今天自动驾驶之心很荣幸邀请到逻辑牛分享深度学习部署的入门介绍,带大家盘一盘ONNX、NCNN、OpenVINO等框架的使用场景、框架特点及代码示例。
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(下)
|
机器学习/深度学习 存储 人工智能
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(上)
今天自动驾驶之心很荣幸邀请到逻辑牛分享深度学习部署的入门介绍,带大家盘一盘ONNX、NCNN、OpenVINO等框架的使用场景、框架特点及代码示例。
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(上)
|
机器学习/深度学习 自动驾驶 PyTorch
手把手教你使用LabVIEW TensorRT实现图像分类实战上(含源码)
手把手教你使用LabVIEW TensorRT实现图像分类实战上
191 0

热门文章

最新文章