《基于数据分析与优化算法的智能物流》电子版地址

简介: 基于数据分析与优化算法的智能物流

《基于数据分析与优化算法的智能物流》基于数据分析与优化算法的智能物流

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

                
            </div>
目录
相关文章
|
6月前
|
SQL 人工智能 数据挖掘
阿里云DMS,身边的智能化数据分析助手
生成式AI颠覆了人机交互的传统范式,赋予每个人利用AI进行低门槛数据分析的能力。Data Fabric与生成式AI的强强联合,不仅能够实现敏捷数据交付,还有效降低了数据分析门槛,让人人都能数据分析成为可能!阿里云DMS作为阿里云统一的用数平台,在2021年初就开始探索使用Data Fabric理念构建逻辑数仓来加速企业数据价值的交付,2023年推出基于大模型构建的Data Copilot,降低用数门槛,近期我们将Notebook(分析窗口)、逻辑数仓(Data Fabric)、Data Copilot(生成式AI)进行有机组合,端到端的解决用数难题,给用户带来全新的分析体验。
111411 120
阿里云DMS,身边的智能化数据分析助手
|
6月前
|
人工智能 数据挖掘 机器人
【python】python智能停车场数据分析(代码+数据集)【独一无二】
【python】python智能停车场数据分析(代码+数据集)【独一无二】
211 0
|
2月前
|
存储 算法 数据挖掘
高效文本处理新纪元:Python后缀树Suffix Tree,让数据分析更智能!
在大数据时代,高效处理和分析文本信息成为关键挑战。后缀树作为一种高性能的数据结构,通过压缩存储字符串的所有后缀,实现了高效的字符串搜索、最长公共前缀查询等功能,成为文本处理的强大工具。本文探讨Python中后缀树的应用,展示其在文本搜索、重复内容检测、最长公共子串查找、文本压缩及智能推荐系统的潜力,引领数据分析迈入新纪元。虽然Python标准库未直接提供后缀树,但通过第三方库或自定义实现,可轻松利用其强大功能。掌握后缀树,即掌握开启文本数据宝藏的钥匙。
54 5
|
4月前
|
机器学习/深度学习 数据采集 数据挖掘
智能决策新引擎:Python+Scikit-learn,打造高效数据分析与机器学习解决方案!
【7月更文挑战第26天】在数据驱动时代,企业需从大数据中提取价值以精准决策。Python凭借丰富的库成为数据分析利器,而Scikit-learn作为核心工具备受青睐。本文通过电商案例展示如何预测潜在买家以实施精准营销。首先进行数据预处理,包括清洗、特征选择与转换;接着采用逻辑回归模型进行训练与预测;最后评估模型并优化。此方案显著提升了营销效率和企业决策能力,预示着智能决策系统的广阔前景。
98 2
|
4月前
|
人工智能 算法 数据挖掘
高效文本处理新纪元:Python后缀树Suffix Tree,让数据分析更智能!
【7月更文挑战第20天】后缀树是文本处理的关键工具,它在Python中虽需第三方库支持(如pysuffixtree),但能高效执行搜索、重复内容检测等任务。应用于文本搜索、重复内容检测、生物信息学、文本压缩及智能推荐系统。随着AI和大数据发展,后缀树将在更多领域展现潜力,助力数据分析智能化和高效化。学习和利用后缀树,对于驾驭海量文本数据至关重要。**
48 1
|
6月前
|
人工智能 自然语言处理 数据挖掘
产品更新|宜搭AI 新增「智能数据分析」「智能表单」两项功能!
「宜搭AI」开放新一期功能:智能数据分析、智能表单,已支持在宜搭网页端使用体验。
486 0
产品更新|宜搭AI 新增「智能数据分析」「智能表单」两项功能!
|
4月前
|
数据挖掘 数据处理 决策智能
Python 数据分析工具箱:深挖 Pandas 与 NumPy 高级功能,驱动智能决策
【7月更文挑战第12天】Python的Pandas和NumPy是数据分析的基石。Pandas提供灵活的数据结构如DataFrame,用于高效处理关系型数据,而NumPy则以多维数组和科学计算功能著称。两者结合,支持数据合并(如`pd.merge`)、时间序列分析(`pd.to_datetime`)和高级数组运算。通过掌握它们的高级特性,能提升数据分析效率,应用于各领域,如金融风险评估、市场分析和医疗预测,助力数据驱动的决策。学习和熟练运用Pandas与NumPy是成为出色数据分析师的关键。
60 0
|
5月前
|
存储 算法 NoSQL
数据结构和算法——哈希查找冲突处理方法(开放地址法-线性探测、平方探测、双散列探测、再散列,分离链接法)
数据结构和算法——哈希查找冲突处理方法(开放地址法-线性探测、平方探测、双散列探测、再散列,分离链接法)
155 1
|
5月前
|
存储 算法
数据结构和算法——散列表的性能分析(开放地址法的查找性能、期望探测次数与装填因子的关系、分离链接法的查找性能)
数据结构和算法——散列表的性能分析(开放地址法的查找性能、期望探测次数与装填因子的关系、分离链接法的查找性能)
107 0
|
6月前
|
自然语言处理 数据可视化 数据挖掘
首批!瓴羊Quick BI完成中国信通院大模型驱动的智能数据分析工具专项测试
首批!瓴羊Quick BI完成中国信通院大模型驱动的智能数据分析工具专项测试
207 1
下一篇
无影云桌面