基于Matlab模拟spectral-tensor湍流大气稳定模型

简介: 基于Matlab模拟spectral-tensor湍流大气稳定模型

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate epsilon, the length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, the Richardson number Ri, and the normalized rate of destruction of temperature variance eta(theta) equivalent to epsilon(theta)/epsilon. Here, the latter two parameters are collapsed into a single atmospheric stability parameter z/L usingMonin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to {Ri ,eta(theta)}. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale similar to 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.

⛄ 部分代码

Fitting the stability-corrected uniform-shear model

This example calls the function fitChougule to estimate the three (or four) parameters of the stability-corrected uniform shear model. The fitting procedure can include "missing information". For example, one may not know everything about the three velocity components or atmospheric stability. Thus, the fitting algorithm attempt to reconstruct the spatial structure of turbulence knowing only a fraction of it. The fitting algorithm is similar as fitMann [1]

[1] E. Cheynet (2022). Fitting the Uniform Shear Model to real data. Zenodo, 2020, doi:10.5281/ZENODO.3774088.

Table of Contents

Definition of the target parameters and model

Case 1: The stability parameter is unknown

Case 2: Only the along-wind velocity component is known

Case 3: Only the along-wind and across-wind velocity components are known

Case 4: Only the vertical velocity component is known

     

Definition of the target parameters and model


clearvars;close all;clc;

zeta = 0.6; % non dimensional stability parameter z0 = z/L

GAMMA = 3.2; % Shear parameter

L = 10; % m turbulence length scale

alphaEps =0.05; % m^(4/3)/s^2


% frequency steps

N1 = 30; % number of frequency steps

myIter = 10; % Number of iterationto solve the RDT equations

tic

[PHI,k11,k2_log,k3_log] = ChouguleTurb(alphaEps,GAMMA,L,zeta,'N1',N1,'Niter',myIter);

FM0= squeeze(trapz(k3_log,trapz(k2_log,PHI,2),3));

Su_Ch= FM0(end-N1+1:end,1,1)';

Sv_Ch= FM0(end-N1+1:end,2,2)';

Sw_Ch= FM0(end-N1+1:end,3,3)';

Suw_Ch= FM0(end-N1+1:end,1,3)';

k11_Ch = k11;

toc


% Plot the target spectra and cross-spectra

clf;close all;

figure

semilogx(k11,k11.*Su_Ch);

set(gca,'yscale','lin')

hold on

semilogx(k11,k11.*Sv_Ch);

semilogx(k11,k11.*Sw_Ch);

semilogx(k11,k11.*Suw_Ch);

xlabel('$k_1$ (m$^{-1}$)','interpreter','latex')

ylabel('$k_1 F(k_1) $ (m s$^{-2}$)','interpreter','latex')

axis tight

set(gcf,'color','w')

axis tight

grid on

grid minor

legend('u','v','w','uw')


⛄ 运行结果

⛄ 参考文献

[1] Chougule, A., Mann, J., Kelly, M., & Larsen, G. C. (2018). Simplification and validation of a spectral-tensor model for turbulence including atmospheric stability. Boundary-Layer Meteorology, 167(3), 371-397.

[2]  E. Cheynet (2022). Uniform shear model including atmospheric stability. Zenodo.  Retrieved yyyy-mm-dd.  doi:10.5281/zenodo.3774066

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
15天前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
20 0
|
17天前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
44 1
|
24天前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
24天前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
26天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
11天前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
1月前
|
存储 算法 数据可视化
MATLAB - 模型预测控制入门教程(MPC)
MATLAB - 模型预测控制入门教程(MPC)
73 9
|
1月前
|
调度 容器
MATLAB - 连续搅拌釜式反应器模型(Continuous Stirred Tank Reactor,CSTR)
MATLAB - 连续搅拌釜式反应器模型(Continuous Stirred Tank Reactor,CSTR)
70 2
|
1月前
|
机器人
MATLAB - 机器人任务空间运动模型
MATLAB - 机器人任务空间运动模型
33 1
|
1月前
|
存储
MATLAB - 使用 MPC Designer 线性化 Simulink 模型
MATLAB - 使用 MPC Designer 线性化 Simulink 模型
36 1

热门文章

最新文章