【语音识别】基于BP神经网络实现语音特征信号分类附matlab代码

简介: 【语音识别】基于BP神经网络实现语音特征信号分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

语音识别技术具有重要的理论价值和广阔的应用前景,近年来受到了人们的广泛重视.随着电子计算机的不断应用与发展以及人工智能的不断进步与完善,人们越来越希望让机器能够理解人类的自然语言,这种需求使得语音识别技术的研究与发展十分迅速.一直以来,语音识别研究大部分以线性系统理论为基础,主要包括应矢量量化(VQ),动态时间规整(DTW)与隐马尔可夫模型(HMM)等技术.然而,人的发音实际上是一个复杂的非线性过程,基于线性系统理论的语音识别方法的局限性渐渐显露出来.语音识别技术若要取得突破,必须引入非线性理论的方法,人工神经网络(ANN)就是非线性理论中的一种有效方法.近年来,随着人工神经网络,特别是BP神经网络等非线性理论研究与应用的逐渐深入,使这些理论应用于语音识别成为可能.本文以语音识别技术和BP神经网络理论为基础,结合MATLAB工具,研究了BP网络模型在语音识别中的应用问题.

⛄ 部分代码

%% 清空环境变量

clc

clear


%% 训练数据预测数据提取及归一化


%下载四类语音信号

load data1 c1

load data2 c2

load data3 c3

load data4 c4


%四个特征信号矩阵合成一个矩阵

data(1:500,:)=c1(1:500,:);

data(501:1000,:)=c2(1:500,:);

data(1001:1500,:)=c3(1:500,:);

data(1501:2000,:)=c4(1:500,:);


%从1到2000间随机排序

k=rand(1,2000);

[m,n]=sort(k);


%输入输出数据

input=data(:,2:25);

output1 =data(:,1);


%把输出从1维变成4维

for i=1:2000

   switch output1(i)

       case 1

           output(i,:)=[1 0 0 0];

       case 2

           output(i,:)=[0 1 0 0];

       case 3

           output(i,:)=[0 0 1 0];

       case 4

           output(i,:)=[0 0 0 1];

   end

⛄ 运行结果

⛄ 参考文献

[1]詹新明. 基于BP神经网络的语音识别研究[D]. 华南理工大学, 2009.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
112 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
1月前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
4月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
261 80
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
1月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
2月前
|
编解码 算法 数据安全/隐私保护
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
|
3月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
247 10
|
4月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
3月前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。

热门文章

最新文章

  • 1
    语音识别和语音合成技术
    393
  • 2
    实时语音识别 使用websockt传输二进制数组 onSentenceEnd不返回结果
    62
  • 3
    在人工智能和机器学习的领域中,语音识别(Speech Recognition,SR)是一个重要的研究方向。它旨在将人类的语音转换为计算机可读的文本。
    269
  • 4
    Python基于librosa和人工神经网络实现语音识别分类模型(ANN算法)项目实战
    371
  • 5
    深度学习在语音识别中的进展
    113
  • 6
    语音识别------ffmpeg的使用01,ffmpeg的安装,会做PPT很好,ffmpeg不具备直接使用,只可以操作解码数据,ffmpeg用C语言写的,得学C语言,ffmpeg的安装
    102
  • 7
    语音识别-----列表的常用操作课后练习讲解,用变量追加,取出第一个,取出最后一个,下标位置,列表的循环遍历,下标+1的写法,len下标可以小于这个值,while循环对index循环的遍历
    61
  • 8
    语音识别-免费开源的语音转文本软件Whisper的本地搭建详细教程,python版本是3.805,ffmpeg是专门处理音视频的,ffmpeg的下载链接,现在要求安装python和ffmpeg
    375
  • 9
    语音识别,列表的定义语法,列表[],列表的下标索引,从列表中取出来特定的数据,name[0]就是索引,反向索引,头部是-1,my[1][1],嵌套列表使用, 列表常用操作, 函数一样,需引入
    73
  • 10
    语音识别,函数综合案例,黑马ATM,/t/t一个对不齐,用两个/t,数据容器入门,数据容器可以分为列表(list)、元组(tuple)、字符串(str)、集合(set)、字典(dict)
    78
  • 下一篇
    oss创建bucket