一.简介
一个由C/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)
由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。是由编译器自动分配和释放的,即在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元将被自动释放。需要注意的是,栈内存分配运算内置于处理器的指令集中,它的运行效率一般很高,但是分配的内存容量有限。
2、堆区(heap)
也被称为动态内存分配,它是由程序员手动完成申请和释放的,程序结束时可能由OS回收 。与数据结构中的堆是两回事,分配方式倒是类似于链表。 即程序在运行的时候由程序员使用内存分配函数(如 malloc 函数)来申请任意多少的内存,使用完之后再由程序员自己负责使用内存释放函数(如 free 函数)来释放内存。也就是说,动态内存的整个生存期是由程序员自己决定的,使用非常灵活。需要注意的是,如果在堆上分配了内存空间,就必须及时释放它,否则将会导致运行的程序出现内存泄漏等错误。
3、全局区(静态区)(static)
全局变量和静态变量的存储是放在一块的(全局变量就是采取静态存储方式的),初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。分配是由编译器自动分配和释放的,即内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在,直到整个程序运行结束时才被释放,如全局变量与 static 变量。
4、文字常量区
常量字符串就是放在这里的,程序结束后由系统释放。
5、程序代码区
存放函数体的二进制代码。
代码实例
1. //main.cpp 2. int a = 0; //全局初始化区 3. char *p1; //全局未初始化区 4. main() 5. { 6. int b; //栈 7. char s[] = "abc"; //栈 8. char *p2; //栈 9. char *p3 = "123456"; // 123456/0在常量区,p3在栈上。 10. static int c =0; // 全局(静态)初始化区 11. p1 = (char *)malloc(10); 12. p2 = (char *)malloc(20); 13. //分配得来得10和20字节的区域就在堆区。 14. strcpy(p1, "123456"); //123456/0放在常量区,编译器可能会将它与p3所指向的"123456" 优化成一个地方。 15. }
这里可以看到一点的是,一个指针,如果我们是程序员自己申请的话,就存储在堆区,如果是系统分配的话就存储在栈区
二.堆和栈的理论知识
1、申请方式
栈:由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
堆:需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = new char[10];
但是注意p1、p2本身是在栈中的。
需要补充的一些细节是:栈内存是由编译器自动分配与释放的,它其实有两种分配方式:静态分配和动态分配。
静态分配是由编译器自动完成的,如局部变量的分配(即在一个函数中声明一个 int 类型的变量i时,编译器就会自动开辟一块内存以存放变量 i)。与此同时,其生存周期也只在函数的运行过程中,在运行后就释放,并不可以再次访问。
动态分配由 alloca 函数进行分配,但是栈的动态分配与堆是不同的,它的动态分配是由编译器进行释放,无需任何手工实现。值得注意的是,虽然用 alloca 函数可以实现栈内存的动态分配,但 alloca 函数的可移植性很差,而且在没有传统堆栈的机器上很难实现。因此,不宜使用于广泛移植的程序中。当然,完全可以使用 C99 中的变长数组来替代 alloca 函数。
而堆内存则不相同,它完全是由程序员手动申请与释放的,程序在运行的时候由程序员使用内存分配函数(如 malloc 函数)来申请任意多少的内存,使用完再由程序员自己负责使用内存释放函数(如 free 函数)释放内存,如下面的代码所示:
/*分配堆内存*/ char *p1 = (char *)malloc(4); … … /*释放堆内存*/ free(p1); p1=NULL;
对栈内存的自动释放而言,虽然堆上的数据只要程序员不释放空间就可以一直访问,但是,如果一旦忘记了释放堆内存,那么将会造成内存泄漏,导致程序出现致命的潜在错误。
2、申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的 释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
3、申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
4、申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一块内存,虽然用起来最不方便。但是速度快,也最灵活。
理论上分析大家都知道,栈是机器系统提供的数据结构,计算机会在底层对栈提供支持,例如,分配专门的寄存器存放栈的地址,压栈出栈都有专门的执行指令,这就决定了栈的效率比较高。一般而言,只要栈的剩余空间大于所申请空间,系统就将为程序提供内存,否则将报异常提示栈溢出。
而堆则不同,它是由 C/C++ 函数库提供的,它的机制也相当复杂。例如,为了分配一块堆内存,首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆节点,然后将该节点从空闲节点链表中删除,并将该节点的空间分配给程序。而对于大多数系统,会在这块内存空间的首地址处记录本次分配的大小,这样,代码中的 delete 语句才能正确释放本内存空间。另外,由于找到的堆节点的大小不一定正好等于申请的大小,系统会自动将多余的那部分重新放入空闲链表中。很显然,堆的分配效率比栈要低得多。
5 、申请碎片的问题
对堆来说,频繁分配和释放(malloc / free)不同大小的堆空间势必会造成内存空间的不连续,从而造成大量碎片,导致程序效率降低;而对栈来讲,则不会存在这个问题。
6、堆和栈中的存储内容
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容由程序员安排。
实例:
void f(int i) { printf("%d,%d,%d,%d\n", i, i++, i++, i++); } int main(void) { int i = 1; f(i); return 0; }
由于栈的“先进后出”规则,所以程序最后的输出结果是“4,3,2,1”。
7、存取效率的比较
char s1[] = “aaaaaaaaaaaaaaa”;
char *s2 = “bbbbbbbbbbbbbbbbb”;
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include 2. void main() 3. { 4. char a = 1; 5. char c[] = "1234567890"; 6. char *p ="1234567890"; 7. a = c[1]; 8. a = p[1]; 9. return; 10. }
对应的汇编代码
10: a = c[1]; 00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh] 0040106A 88 4D FC mov byte ptr [ebp-4],cl 11: a = p[1]; 0040106D 8B 55 EC mov edx,dword ptr [ebp-14h] 00401070 8A 42 01 mov al,byte ptr [edx+1] 00401073 88 45 FC mov byte ptr [ebp-4],al 00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到 edx中,再根据edx读取字符,显然慢了。
二者比较
#include <stdio.h> #include <malloc.h> int main(void) { /*在栈上分配*/ int i1=0; int i2=0; int i3=0; int i4=0; printf("栈:向下\n"); printf("i1=0x%08x\n",&i1); printf("i2=0x%08x\n",&i2); printf("i3=0x%08x\n",&i3); printf("i4=0x%08x\n\n",&i4); printf("--------------------\n\n"); /*在堆上分配*/ char *p1 = (char *)malloc(4); char *p2 = (char *)malloc(4); char *p3 = (char *)malloc(4); char *p4 = (char *)malloc(4); printf("p1=0x%08x\n",p1); printf("p2=0x%08x\n",p2); printf("p3=0x%08x\n",p3); printf("p4=0x%08x\n",p4); printf("堆:向上\n\n"); /*释放堆内存*/ free(p1); p1=NULL; free(p2); p2=NULL; free(p3); p3=NULL; free(p4); p4=NULL; return 0; }
该示例代码主要演示了在内存分配中的堆和栈的区别,其运行结果为:
栈:向下 i1=0x0060fefc i2=0x0060fef8 i3=0x0060fef4 i4=0x0060fef0 p1=0x00bd14e0 p2=0x00bd3148 p3=0x00bd3158 p4=0x00bd3168 堆:向上
从运行结果中不难发现,内存中的栈区主要用于分配局部变量空间,处于相对较高的地址,其栈地址是向下增长的;而堆区则主要用于分配程序员申请的内存空间,堆地址是向上增长的。
三.各类型变量的存储位置和作用域。
最后介绍一下 C 语言中各类型变量的存储位置和作用域。
全局变量。从静态存储区域分配,其作用域是全局作用域,也就是整个程序的生命周期内都可以使用。与此同时,如果程序是由多个源文件构成的,那么全局变量只要在一个文件中定义,就可以在其他所有的文件中使用,但必须在其他文件中通过使用extern关键字来声明该全局变量。
全局静态变量。从静态存储区域分配,其生命周期也是与整个程序同在的,从程序开始到结束一直起作用。但是与全局变量不同的是,全局静态变量作用域只在定义它的一个源文件内,其他源文件不能使用。
局部变量。从栈上分配,其作用域只是在局部函数内,在定义该变量的函数内,只要出了该函数,该局部变量就不再起作用,该变量的生命周期也只是和该函数同在。
局部静态变量。从静态存储区域分配,其在第一次初始化后就一直存在直到程序结束,该变量的特点是其作用域只在定义它的函数内可见,出了该函数就不可见了。