【分布式技术专题】「架构实践于案例分析」总结和盘点目前常用分布式事务特别及问题分析(上)

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 【分布式技术专题】「架构实践于案例分析」总结和盘点目前常用分布式事务特别及问题分析(上)

分布式事务


分布式事务的场景

什么场景下会出现分布式事务?



TX协议


⼀种分布式事务协议,包含⼆阶段提交(2PC),三阶段提交(3PC)两种实现。


二阶段提交方案:强一致性


事务的发起者称协调者,事务的执行者称参与者。


处理流程:


  • 准备阶段


  1. 事务协调者,向所有事务参与者发送事务内容,询问是否可以提交事务,并等待参与者回复。
  2. 事务参与者收到事务内容,开始执行事务操作,将undo和redo信息记入事务日志中(但此时并不提交事务)。
  3. 如果参与者执行成功,给协调者回复yes,表示可以进行事务提交。如果执行失败,给协调者回复no,表示不可提交。



注意:必须在最后阶段释放锁资源,接下来分两种情况分别讨论提交阶段的过程。


  • 所有参与者均反馈 yes,提交事务
  1. 协调者向所有参与者发出正式提交事务的请求(即 commit 请求)。
  2. 参与者执行 commit 请求,并释放整个事务期间占用的资源。
  3. 各参与者向协调者反馈 ack(应答)完成的消息。
  4. 协调者收到所有参与者反馈的 ack 消息后,即完成事务提交。



如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(rollback)消息;否则,发送提交(commit)消息。

image.png

image.png


  • 当任何阶段 1 一个参与者反馈 no,中断事务。


  1. 协调者向所有参与者发出回滚请求(即 rollback 请求)。
  2. 参与者使用阶段 1 中的 undo 信息执行回滚操作,并释放整个事务期间占用的资源。
  3. 各参与者向协调者反馈 ack 完成的消息。
  4. 协调者收到所有参与者反馈的 ack 消息后,即完成事务中断。

image.png

  • 提交阶段


  1. 如果协调者收到了参与者的失败信息或超时信息,直接给所有参与者发送回滚(rollback)信息进行事务回滚,否则,发送提交(commit)信息。
  2. 参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源) 接下来分两种情况分别讨论提交阶段的过程。


image.png

数据一致性问题:在阶段 2 中,如果发生局部网络问题,一部分事务参与者收到了提交消息,另一部分事务参与者没收到提交消息,那么就导致了节点之间数据的不一致。



XA优缺点分析


2PC 方案实现起来简单,实际项目中使用比较少,主要因为以下问题



优点


  • 关系型数据库普遍⽀持XA协议
  • 使⽤基于XA协议的分布式事务技术成本较低


缺点


  • 性能较差:所有参与者在事务提交阶段处于同步阻塞状态,占用系统资源,容易导致性能瓶颈。
  • ⽆法满⾜⾼并发场景:如果协调者存在单点故障问题,如果协调者出现故障,参与者将一直处于锁定状态。



三阶段提交方案:强一致性


三阶段提交是在二阶段提交上的改进版本,主要是加入了超时机制。同时在协调者和参与者中都引入超时机制。


三阶段将二阶段的准备阶段拆分为2个阶段,插入了一个preCommit阶段,以此来处理原先二阶段,参与者准备后,参与者发生崩溃或错误,导致参与者无法知晓是否提交或回滚的不确定状态所引起的延时问题。


处理流程


  • 阶段 1:canCommit


  1. 协调者向参与者发送commit请求,参与者如果可以提交就返回 yes 响应(参与者不执行事务操作),否则返回 no 响应:
  2. 协调者向所有参与者发出包含事务内容的 canCommit 请求,询问是否可以提交事务,并等待所有参与者答复。
  3. 参与者收到 canCommit 请求后,如果认为可以执行事务操作,则反馈 yes 并进入预备状态,否则反馈 no。


  • 阶段 2:preCommit

  1. 协调者根据阶段 1 canCommit 参与者的反应情况来决定是否可以进行基于事务的 preCommit 操作。根据响应情况,有以下两种可能。


  • 情况 1:阶段 1 所有参与者均反馈 yes,参与者预执行事务:


  1. 协调者向所有参与者发出 preCommit 请求,进入准备阶段。
  2. 参与者收到 preCommit 请求后,执行事务操作,将 undo 和 redo 信息记入事务日志中(但不提交事务)。
  3. 各参与者向协调者反馈 ack 响应或 no 响应,并等待最终指令。

image.png

image.png

  • 情况 2:阶段 1 任何一个参与者反馈 no,或者等待超时后协调者尚无法收到所有参与者的反馈,即中断事务,如上图:


  1. 协调者向所有参与者发出 abort 请求。
  2. 无论收到协调者发出的 abort 请求,或者在等待协调者请求过程中出现超时,参与者均会中断事务。

image.png

image.png

  • 阶段 3:do Commit

该阶段进行真正的事务提交,也可以分为以下两种情况。

image.png

  • 如果协调者处于工作状态,则向所有参与者发出 do Commit 请求。


  • 参与者收到 do Commit 请求后,会正式执行事务提交,并释放整个事务期间占用的资源。


  • 各参与者向协调者反馈 ack 完成的消息。


  • 协调者收到所有参与者反馈的 ack 消息后,即完成事务提交。


阶段 2 任何一个参与者反馈 no,或者等待超时后协调者尚无法收到所有参与者的反馈,即中断事务。

image.png

  • 如果协调者处于工作状态,向所有参与者发出 abort 请求。


  • 参与者使用阶段 1 中的 undo 信息执行回滚操作,并释放整个事务期间占用的资源。


  • 各参与者向协调者反馈 ack 完成的消息。


  • 协调者收到所有参与者反馈的 ack 消息后,即完成事务中断。



注意:进入阶段 3 后,无论协调者出现问题,或者协调者与参与者网络出现问题,都会导致参与者无法接收到协调者发出的 do Commit 请求或 abort 请求。此时,参与者都会在等待超时之后,继续执行事务提交。



方案总结


  • 优点:相比二阶段提交,三阶段提交降低了阻塞范围,在等待超时后协调者或参与者会中断事务。避免了协调者单点问题,阶段3中协调者出现问题时,参与者会继续提交事务。


  • 缺点:数据不一致问题依然存在,当在参与者收到 preCommit 请求后等待 do commite 指令时,此时如果协调者请求中断事务,而协调者无法与参与者正常通信,会导致参与者继续提交事务,造成数据不一致。



TCC 事务:最终一致性


方案简介


TCC(Try-Confirm-Cancel)的概念,最早是由 Pat Helland 于 2007 年发表的一篇名为《Life beyond Distributed Transactions:an Apostate’s Opinion》的论文提出。


TCC 是服务化的二阶段编程模型,其 Try、Confirm、Cancel 3 个方法均由业务编码实现:


  • Try 操作作为一阶段,负责资源的检查和预留。
  • Confirm 操作作为二阶段提交操作,执行真正的业务。
  • Cancel 是预留资源的取消。


TCC 事务的 Try、Confirm、Cancel 可以理解为 SQL 事务中的 Lock、Commit、Rollback。




处理流程


Try 阶段


从执行阶段来看,与传统事务机制中业务逻辑相同。但从业务角度来看,却不一样。TCC 机制中的 Try 仅是一个初步操作,它和后续的确认一起才能真正构成一个完整的业务逻辑,这个阶段主要完成:


  • 完成所有业务检查( 一致性 ) 。
  • 预留必须业务资源( 准隔离性 ) 。
  • Try 尝试执行业务。


TCC 事务机制以初步操作(Try)为中心的,确认操作(Confirm)和取消操作(Cancel)都是围绕初步操作(Try)而展开。因此,Try 阶段中的操作,其保障性是最好的,即使失败,仍然有取消操作(Cancel)可以将其执行结果撤销。

image.png

假设商品库存为 100,购买数量为 2,这里检查和更新库存的同时,冻结用户购买数量的库存,同时创建订单,订单状态为待确认。



Confirm / Cancel 阶段


根据 Try 阶段服务是否全部正常执行,继续执行确认操作(Confirm)或取消操作(Cancel)。

Confirm 和 Cancel 操作满足幂等性,如果 Confirm 或 Cancel 操作执行失败,将会不断重试直到执行完成。


Confirm:当 Try 阶段服务全部正常执行, 执行确认业务逻辑操作

image.png

这里使用的资源一定是 Try 阶段预留的业务资源。在 TCC 事务机制中认为,如果在 Try 阶段能正常的预留资源,那 Confirm 一定能完整正确的提交。


Confirm 阶段也可以看成是对 Try 阶段的一个补充,Try+Confirm 一起组成了一个完整的业务逻辑。

Cancel:当 Try 阶段存在服务执行失败, 进入 Cancel 阶段

image.png


方案总结


TCC 事务机制相对于传统事务机制(X/Open XA),TCC 事务机制相比于上面介绍的 XA 事务机制,有以下优点:


  • 性能提升:具体业务来实现控制资源锁的粒度变小,不会锁定整个资源。


  • 数据最终一致性:基于 Confirm 和 Cancel 的幂等性,保证事务最终完成确认或者取消,保证数据的一致性。


  • 可靠性:解决了 XA 协议的协调者单点故障问题,由主业务方发起并控制整个业务活动,业务活动管理器也变成多点,引入集群。


  • 缺点: TCC 的 Try、Confirm 和 Cancel 操作功能要按具体业务来实现,业务耦合度较高,提高了开发成本。




相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
3天前
|
Cloud Native 持续交付 微服务
云原生时代的微服务架构实践
【9月更文挑战第30天】随着云计算技术的不断进步,云原生已经成为现代软件开发的重要趋势。本文将通过深入浅出的方式,介绍如何在云原生环境下设计并实施微服务架构,以及如何利用容器化技术和自动化工具来提升服务的可维护性和可扩展性。我们将一起探讨微服务架构的核心原则、优势,以及在云平台中部署和管理微服务的最佳实践。无论你是初学者还是有经验的开发者,这篇文章都将成为你探索云原生和微服务世界的一盏明灯。
|
6天前
|
监控 Cloud Native 持续交付
云原生时代的微服务架构设计原则与实践
【9月更文挑战第27天】本文深入探讨了在云原生环境下,如何高效地实施微服务架构。通过分析微服务的基本概念、设计原则和关键技术,结合实际案例,指导读者理解并应用微服务架构于云计算项目之中。文章旨在为软件开发者和架构师提供一条清晰的路径,以实现更加灵活、可扩展且易于维护的系统。
|
10天前
|
设计模式 Cloud Native API
云原生时代的微服务架构实践
【9月更文挑战第23天】在这篇文章中,我们将深入探讨云原生环境下的微服务架构设计原则、优势以及实施策略。文章不仅涉及理论概念,还结合具体的代码示例,帮助读者理解如何在实际项目中应用微服务架构。通过阅读本文,你将获得构建、部署和管理微服务的实用知识,为你的云原生项目奠定坚实的基础。
|
7天前
|
存储 运维 负载均衡
后端开发中的微服务架构实践与思考
本文旨在探讨后端开发中微服务架构的应用及其带来的优势与挑战。通过分析实际案例,揭示如何有效地实施微服务架构以提高系统的可维护性和扩展性。同时,文章也讨论了在采用微服务过程中需要注意的问题和解决方案。
|
7天前
|
运维 持续交付 API
深入理解并实践微服务架构:从理论到实战
深入理解并实践微服务架构:从理论到实战
31 3
|
9天前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
9天前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
2月前
|
Kubernetes Cloud Native Docker
云原生之旅:从容器到微服务的架构演变
【8月更文挑战第29天】在数字化时代的浪潮下,云原生技术以其灵活性、可扩展性和弹性管理成为企业数字化转型的关键。本文将通过浅显易懂的语言和生动的比喻,带领读者了解云原生的基本概念,探索容器化技术的奥秘,并深入微服务架构的世界。我们将一起见证代码如何转化为现实中的服务,实现快速迭代和高效部署。无论你是初学者还是有经验的开发者,这篇文章都会为你打开一扇通往云原生世界的大门。
|
11天前
|
JSON 监控 安全
探索微服务架构中的API网关模式
【9月更文挑战第22天】在微服务架构的海洋中,API网关如同一位智慧的守门人,不仅管理着服务的进出,还维护着整个系统的秩序。本文将带你一探究竟,看看这位守门人是如何工作的,以及它为何成为现代云原生应用不可或缺的一部分。从流量控制到安全防护,再到服务聚合,我们将一起解锁API网关的秘密。
|
21天前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
27 3
下一篇
无影云桌面