【Redis过期策略/内存淘汰机制/对过期Key的处理】

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 【Redis过期策略/内存淘汰机制/对过期Key的处理】

文章目录


本文内容:

Redis过期策略


Redis采用的过期策略

惰性删除+定期删除

惰性删除流程

在进行get或setnx等操作时,先检查key是否过期,若过期,删除key,然后执行相应操作;若没过期,直接执行相应操作

定期删除流程

对指定个数个库的每一个库随机删除小于等于指定个数个过期key,遍历每个数据库(就是redis.conf中配置的"database"数量,默认为16),检查当前库中的指定个数个key(默认是每个库检查20个key,注意相当于该循环执行20次,循环体时下边的描述),如果当前库中没有一个key设置了过期时间,直接执行下一个库的遍历,随机获取一个设置了过期时间的key,检查该key是否过期,如果过期,删除key,判断定期删除操作是否已经达到指定时长,若已经达到,直接退出定期删除。


问题:定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 Redis 内存块耗尽了,怎么解决呢?走内存淘汰机制

内存淘汰机制

Redis 内存淘汰机制有以下几个:

noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。 allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。


allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的 key 给干掉啊。


volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(这个一般不太合适)。


volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。


volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除。

RDB对过期key的处理

过期key对RDB没有任何影响,从内存数据库持久化数据到RDB文件:持久化key之前,会检查是否过期,过期的key不进入RDB文件 从RDB文件恢复数据到内存数据库:数据载入数据库之前,会对key先进行过期检查,如果过期,不导入数据库(主库情况)

AOF对过期key的处理

过期key对AOF没有任何影响 从内存数据库持久化数据到AOF文件:当key过期后,还没有被删除,此时进行执行持久化操作(该key是不会进入aof文件的,因为没有发生修改命令)当key过期后,在发生删除操作时,程序会向aof文件追加一条del命令(在将来的以aof文件恢复数据的时候该过期的键就会被删掉) AOF重写:重写时,会先判断key是否过期,已过期的key不会重写到aof文件


总结


以上就是今天要讲的内容,还希望各位读者大大能够在评论区积极参与讨


相关文章
|
运维 NoSQL 测试技术
Redis:内存陡增100%深度复盘
本文深度分析了Redis内存陡增100%的一些细节和解决方案。
378 1
Redis:内存陡增100%深度复盘
|
3月前
|
存储 缓存 NoSQL
工作 10 年!Redis 内存淘汰策略 LRU 和传统 LRU 差异,还傻傻分不清
小富带你深入解析Redis内存淘汰机制:LRU与LFU算法原理、实现方式及核心区别。揭秘Redis为何采用“近似LRU”,LFU如何解决频率老化问题,并结合实际场景教你如何选择合适策略,提升缓存命中率。
397 3
|
8月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
1494 0
|
6月前
|
存储 监控 NoSQL
流量洪峰应对术:Redis持久化策略与内存压测避坑指南
本文深入解析Redis持久化策略与内存优化技巧,涵盖RDB快照机制、AOF重写原理及混合持久化实践。通过实测数据揭示bgsave内存翻倍风险、Hash结构内存节省方案,并提供高并发场景下的主从复制冲突解决策略。结合压测工具链构建与故障恢复演练,总结出生产环境最佳实践清单。
186 9
|
8月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
7月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
2月前
|
缓存 负载均衡 监控
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
|
3月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
194 1
Redis专题-实战篇二-商户查询缓存
|
2月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。

热门文章

最新文章