JAVA多线程 | 实现用户任务排队 | 预估排队时长

简介: JAVA多线程 | 实现用户任务排队 | 预估排队时长

 image.gif编辑

实现流程

image.gif编辑

 初始化一定数量的任务处理线程和缓存线程池,用户每次调用接口,开启一个线程处理。

 假设初始化5个处理器,代码执行 BlockingQueue.take 时候,每次take都会处理器队列就会减少一个,当处理器队列为空时,take就是阻塞线程,当用户处理某某任务完成时候,调用资源释放接口,在处理器队列put 一个处理器对象,原来阻塞的take ,就继续执行。

排队论简介

     排队论是研究系统随机聚散现象和随机系统工作工程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。我们下面对排队论做下简化处理,先看下图:

image.gif编辑

代码具体实现

任务队列初始化 TaskQueue

import com.baomidou.mybatisplus.core.toolkit.CollectionUtils;
import org.springframework.stereotype.Component;
import javax.annotation.PostConstruct;
import java.util.Optional;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;
/**
 * 初始化队列及线程池
 * @author tarzan
 *
 */
@Component
public class TaskQueue {
    //处理器队列
    public static BlockingQueue<TaskProcessor> taskProcessors;
    //等待任务队列
    public static BlockingQueue<CompileTask> waitTasks;
    //处理任务队列
    public static BlockingQueue<CompileTask> executeTasks;
    //线程池
    public static ExecutorService exec;
    //初始处理器数(计算机cpu可用线程数)
    public static Integer processorNum=Runtime.getRuntime().availableProcessors();
    /**
     * 初始化处理器、等待任务、处理任务队列及线程池
     */
    @PostConstruct
    public static void initEquipmentAndUsersQueue(){
        exec = Executors.newCachedThreadPool();
        taskProcessors =new LinkedBlockingQueue<TaskProcessor>(processorNum);
        //将空闲的设备放入设备队列中
        setFreeDevices(processorNum);
        waitTasks =new LinkedBlockingQueue<CompileTask>();
        executeTasks=new LinkedBlockingQueue<CompileTask>(processorNum);
    }
    /**
     * 将空闲的处理器放入处理器队列中
     */
    private static void setFreeDevices(int num) {
        //获取可用的设备
        for (int i = 0; i < num; i++) {
            TaskProcessor dc=new TaskProcessor();
            try {
                taskProcessors.put(dc);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
    public static CompileTask getWaitTask(Long clazzId) {
        return get(TaskQueue.waitTasks,clazzId);
    }
    public static CompileTask getExecuteTask(Long clazzId) {
        return get(TaskQueue.executeTasks,clazzId);
    }
    private static CompileTask get(BlockingQueue<CompileTask> users, Long clazzId) {
        CompileTask compileTask =null;
        if (CollectionUtils.isNotEmpty(users)){
            Optional<CompileTask> optional=users.stream().filter(e->e.getClazzId().longValue()==clazzId.longValue()).findFirst();
            if(optional.isPresent()){
                compileTask =  optional.get();
            }
        }
        return compileTask;
    }
    public static Integer getSort(Long clazzId) {
        AtomicInteger index = new AtomicInteger(-1);
        BlockingQueue<CompileTask> compileTasks = TaskQueue.waitTasks;
        if (CollectionUtils.isNotEmpty(compileTasks)){
            compileTasks.stream()
                    .filter(e -> {
                        index.getAndIncrement();
                        return e.getClazzId().longValue() == clazzId.longValue();
                    })
                    .findFirst();
        }
        return index.get();
    }
    //单位秒
    public static int estimatedTime(Long clazzId){
        return  estimatedTime(60,getSort(clazzId)+1);
    }
    //单位秒
    public static int estimatedTime(int cellMs,int num){
         int a= (num-1)/processorNum;
         int b= cellMs*(a+1);
        return  b;
    }

image.gif

编译任务类 CompileTask

import lombok.Data;
import org.springblade.core.tool.utils.SpringUtil;
import org.springblade.gis.common.enums.DataScheduleEnum;
import org.springblade.gis.dynamicds.service.DynamicDataSourceService;
import org.springblade.gis.modules.feature.schedule.service.DataScheduleService;
import java.util.Date;
@Data
public class CompileTask implements Runnable {
    //当前请求的线程对象
    private Long clazzId;
    //用户id
    private Long userId;
    //当前请求的线程对象
    private Thread thread;
    //绑定处理器
    private TaskProcessor taskProcessor;
    //任务状态
    private Integer status;
    //开始时间
    private Date startTime;
    //结束时间
    private Date endTime;
    private DataScheduleService dataScheduleService= SpringUtil.getBean(DataScheduleService.class);
    private DynamicDataSourceService dataSourceService= SpringUtil.getBean(DynamicDataSourceService.class);
    @Override
    public void run() {
        compile();
    }
    /**
     * 编译
     */
    public void compile() {
        try {
            //取出一个设备
            TaskProcessor taskProcessor = TaskQueue.taskProcessors.take();
            //取出一个任务
            CompileTask compileTask = TaskQueue.waitTasks.take();
            //任务和设备绑定
            compileTask.setTaskProcessor(taskProcessor);
            //放入
            TaskQueue.executeTasks.put(compileTask);
            System.out.println(DataScheduleEnum.DEAL_WITH.getName()+" "+userId);
            //切换用户数据源
            dataSourceService.switchDataSource(userId);
            //添加进度
            dataScheduleService.addSchedule(clazzId, DataScheduleEnum.DEAL_WITH.getState());
        } catch (InterruptedException e) {
            System.err.println( e.getMessage());
        }
    }
}

image.gif

任务处理器 TaskProcessor

import lombok.Data;
import java.util.Date;
@Data
public class TaskProcessor {
    /**
     * 释放
     */
    public  static Boolean release(CompileTask task)  {
        Boolean flag=false;
        Thread thread=task.getThread();
        synchronized (thread) {
            try {
                if(null!=task.getTaskProcessor()){
                    TaskQueue.taskProcessors.put(task.getTaskProcessor());
                    TaskQueue.executeTasks.remove(task);
                    task.setEndTime(new Date());
                    long intervalMilli = task.getEndTime().getTime() - task.getStartTime().getTime();
                    flag=true;
                    System.out.println("用户"+task.getClazzId()+"耗时"+intervalMilli+"ms");
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return flag;
        }
    }
}

image.gif

Controller控制器接口实现

import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import org.springblade.core.tool.api.R;
import org.springblade.gis.multithread.TaskProcessor;
import org.springblade.gis.multithread.TaskQueue;
import org.springblade.gis.multithread.CompileTask;
import org.springframework.web.bind.annotation.*;
import java.util.Date;
@RestController
@RequestMapping("task")
@Api(value = "数据编译任务", tags = "数据编译任务")
public class CompileTaskController {
    @ApiOperation(value = "添加等待请求 @author Tarzan Liu")
    @PostMapping("compile/{clazzId}")
    public R<Integer> compile(@PathVariable("clazzId") Long clazzId) {
        CompileTask checkUser=TaskQueue.getWaitTask(clazzId);
        if(checkUser!=null){
            return  R.fail("已经正在排队!");
        }
        checkUser=TaskQueue.getExecuteTask(clazzId);
        if(checkUser!=null){
            return  R.fail("正在执行编译!");
        }
        //获取当前的线程
        Thread thread=Thread.currentThread();
        //创建当前的用户请求对象
        CompileTask compileTask =new CompileTask();
        compileTask.setThread(thread);
        compileTask.setClazzId(clazzId);
        compileTask.setStartTime(new Date());
        //将当前用户请求对象放入队列中
        try {
            TaskQueue.waitTasks.put(compileTask);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        TaskQueue.exec.execute(compileTask);
        return R.data(TaskQueue.waitTasks.size()-1);
    }
    @ApiOperation(value = "查询当前任务前还有多少任务等待 @author Tarzan Liu")
    @PostMapping("sort/{clazzId}")
    public R<Integer> sort(@PathVariable("clazzId") Long clazzId) {
        return R.data(TaskQueue.getSort(clazzId));
    }
    @ApiOperation(value = "查询当前任务预估时长 @author Tarzan Liu")
    @PostMapping("estimate/time/{clazzId}")
    public R<Integer> estimatedTime(@PathVariable("clazzId") Long clazzId) {
        return R.data(TaskQueue.estimatedTime(clazzId));
    }
    @ApiOperation(value = "任务释放 @author Tarzan Liu")
    @PostMapping("release/{clazzId}")
    public R<Boolean> release(@PathVariable("clazzId") Long clazzId) {
        CompileTask task=TaskQueue.getExecuteTask(clazzId);
        if(task==null){
            return  R.fail("资源释放异常");
        }
        return R.status(TaskProcessor.release(task));
    }
    @ApiOperation(value = "执行 @author Tarzan Liu")
    @PostMapping("exec")
    public R exec() {
        Long start=System.currentTimeMillis();
        for (Long i = 1L; i < 100; i++) {
            compile(i);
        }
        System.out.println("消耗时间:"+(System.currentTimeMillis()-start)+"ms");
        return R.status(true);
    }
}

image.gif

接口测试

根据任务id查询该任务前还有多少个任务待执行

image.gif编辑

根据任务id查询该任务预估执行完成的剩余时间,单位秒

image.gif编辑

补充知识

BlockingQueue即阻塞队列,它是基于ReentrantLock,依据它的基本原理,我们可以实现Web中的长连接聊天功能,当然其最常用的还是用于实现生产者与消费者模式,大致如下图所示:

image.gif编辑

在Java中,BlockingQueue是一个接口,它的实现类有ArrayBlockingQueue、DelayQueue、 LinkedBlockingDeque、LinkedBlockingQueue、PriorityBlockingQueue、SynchronousQueue等,它们的区别主要体现在存储结构上或对元素操作上的不同,但是对于take与put操作的原理,却是类似的。

2. 阻塞与非阻塞

入队

offer(E e):如果队列没满,立即返回true; 如果队列满了,立即返回false-->不阻塞

put(E e):如果队列满了,一直阻塞,直到队列不满了或者线程被中断-->阻塞

offer(E e, long timeout, TimeUnit unit):在队尾插入一个元素,,如果队列已满,则进入等待,直到出现以下三种情况:-->阻塞

被唤醒

等待时间超时

当前线程被中断

出队

poll():如果没有元素,直接返回null;如果有元素,出队

take():如果队列空了,一直阻塞,直到队列不为空或者线程被中断-->阻塞

poll(long timeout, TimeUnit unit):如果队列不空,出队;如果队列已空且已经超时,返回null;如果队列已空且时间未超时,则进入等待,直到出现以下三种情况:

被唤醒

等待时间超时

当前线程被中断

相关文章
|
1天前
|
安全 Java 调度
Java线程:深入理解与实战应用
Java线程:深入理解与实战应用
13 0
|
1天前
|
Java
Java中的并发编程:理解和应用线程池
【4月更文挑战第23天】在现代的Java应用程序中,性能和资源的有效利用已经成为了一个重要的考量因素。并发编程是提高应用程序性能的关键手段之一,而线程池则是实现高效并发的重要工具。本文将深入探讨Java中的线程池,包括其基本原理、优势、以及如何在实际开发中有效地使用线程池。我们将通过实例和代码片段,帮助读者理解线程池的概念,并学习如何在Java应用中合理地使用线程池。
|
5天前
|
安全 Java
深入理解 Java 多线程和并发工具类
【4月更文挑战第19天】本文探讨了Java多线程和并发工具类在实现高性能应用程序中的关键作用。通过继承`Thread`或实现`Runnable`创建线程,利用`Executors`管理线程池,以及使用`Semaphore`、`CountDownLatch`和`CyclicBarrier`进行线程同步。保证线程安全、实现线程协作和性能调优(如设置线程池大小、避免不必要同步)是重要环节。理解并恰当运用这些工具能提升程序效率和可靠性。
|
6天前
|
安全 Java
java多线程(一)(火车售票)
java多线程(一)(火车售票)
|
6天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
6天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
7天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
7天前
|
存储 安全 Java
Java中的容器,线程安全和线程不安全
Java中的容器,线程安全和线程不安全
15 1
|
7天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
7 0
|
8天前
|
缓存 监控 Java
Java并发编程:线程池与任务调度
【4月更文挑战第16天】Java并发编程中,线程池和任务调度是核心概念,能提升系统性能和响应速度。线程池通过重用线程减少创建销毁开销,如`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`。任务调度允许立即或延迟执行任务,具有灵活性。最佳实践包括合理配置线程池大小、避免过度使用线程、及时关闭线程池和处理异常。掌握这些能有效管理并发任务,避免性能瓶颈。