人工智能模型的网络结构可视化

简介: 本文主要介绍人工智能模型的网络结构可视化的常见方法。

对于使用神经网络模型来说,我们主要关注的是模型的输入和输出。在 ML.NET 中使用 ONNX 模型时,我们就需要了解这些信息,以便在构成神经网络的所有层之间生成连接映射。

下图就是之前 《YOLOv7 在 ML.NET 中使用 ONNX 检测对象》 文章中使用到的 ONNX 模型基本属性信息。

输入输出

NETRON

Netron 是一款常见的可视化工具,支持网页查看,只需打开网站 https://netron.app/ 点击 “Open Model…” 即可上传查看模型的网络结构,并且支持 ML.NET 模型。

netron.app

以下是其网站模型结构展示的效果:

netron 效果

Netron 也支持 Windows、Linux、macOS 客户端的安装,可前往 Github 仓库下载 Netron 客户端

另外你也可以使用 pip 安装使用:

pip install netron

之后可以使用命令 netron 即可在本地启动一个服务查看模型,也可以使用 netron [file] 直接指定模型文件。

netron pip

VisualDL

VisualDL是飞桨可视化分析工具,其中包含了网络结构的查看,其该部分功能也是由 netron 提供的支持。

使用 pip 安装:

pip install --upgrade --pre visualdl

VisualDL 主要用于训练过程中的数据可视化,当前的版本 VisualDL 2.4.1 如果未指定 --logdir 参数,直接通过命令 visualdl 启动则会报错:TypeError: 'NoneType' object is not iterable 。使用下面的命令启动用于查看模型网络结构即可。

visualdl --logdir .

visualdl

visualdl

你也可以使用 --host 参数指定服务的 IP 地址,--port 指定服务的端口地址。更多介绍可前往官网查看:https://www.paddlepaddle.org.cn/paddle/visualdl

相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
116 55
|
3天前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
|
18天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
36 12
|
25天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
48 8
|
1月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
83 2
|
1月前
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
|
1月前
|
机器学习/深度学习 人工智能 图形学
如何将图形学先验知识融入到人工智能模型中?
如何将图形学先验知识融入到人工智能模型中?
|
1月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
116 1
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
84 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
下一篇
DataWorks