BCH编码译码误码率性能matlab仿真

简介: BCH编码译码误码率性能matlab仿真

1.算法描述

   BCH编译码是一种纠错能力强,构造简单的信道编译码。BCH编译码的生成多项式可以由如下的式子表示:

1.png
2.png

①BCH码是一种纠错码、线性分组码、循环码。

②需要传输信息位数:k

③纠错能力:t

④总码长(信息位+监督位):n

⑤n的长度满足n=2^m – 1时生成的为本原BCH码;n的长度为2^m – 1的因子时为非本原BCH码

(如n=15,n=31,n=63时为本原BCH码;n=21(可被63整除)等时为非本原BCH码)

⑥此外还有加长BCH码和缩短BCH码。

⑦具体的BCH码通常用BCH(n,k)码来表示。

加长BCH码和缩短BCH码:
因为本原BCH码和非本原BCH码要求了n的长度,但很多情况下我们想要的码长并不满足n=2^m – 1或其因子。这时候就需要加长BCH码和缩短BCH码。

(1)缩短BCH码

BCH(50,32)码是扩展域GF(2^6)上BCH(63,45)码的缩短码。BCH(50,32)码和BCH(63,45)码的区别与联系:

①两者纠错能力相同,生成多项式相同。

②缩短码的实现只需要在编译码时在高位上补0,从k = 32凑到k = 45即可。

(2)加长BCH码

在本原BCH码或非本原BCH码的生成多项式中乘因式(x+1),可以得到加长BCH码(n+1,k),加了一个校验位。

    本课题,主要分析码率为0.8和0.5两种模式下 的BCH编译码性能,将BCH码的参数设置为BCH(255,207)和BCH(255,131),两种参数下的编码码率分别为0.8117和0.5137。

    以BCH(255,207)为例进行分析,编码之后的码字包含信息字节和校验字节,其表达式如下所示:

3.png

     BCH译码过程主要通过计算伴随式sj得到错误位置多项式,然后通过chein算法计算错误位置多项式的根,从而确定错误位置数。并最终由错误位置数得到错误值以及错误图样E(x),最后通过R(x)- E(x)= C(x)进行纠错。

2.仿真效果预览
matlab2022a仿真结果如下:
4.png

   从图3.2的仿真结果可知,采用BCH(255,131)的编译码方式,其码率接近0.5,因此具有较好的编译码性能,当SNR为6db的时候,误码率达到10的-4次方。而采用BCH(255,207)编译码方式,其码率较高,为0.8117。虽然具有较高的传输效率,但是其性能较差。在SNR为7db的时候,误码率性能为10的-3次方。

3.MATLAB部分代码预览

clear all;
close all;
warning off;
 
SNR  = [0:1:7];
TJL  = 5000;
N    = 255; 
K    = 207; 
 
%主体代码
for i = 1:length(SNR)
    i
    Bit_err(i)    = 0; %设置误码率参数
    Num_err       = 0; %蒙特卡洛模拟次数
    Numbers       = 0; %误码率累加器
    while Num_err <= TJL 
          %计算几个值
          message    = randint(1,K,[0,1]);
          msg        = gf(message);
          BCHcode_gf = bchenc(msg,N,K);
          %BCH编码
          BCHcode_double=-1*ones(1,N);
          for code_j=1:N
              if BCHcode_gf(1,code_j)==1
                 BCHcode_double(1,code_j)=1;
              end
          end
          %信道
          BCH_receive = awgn(BCHcode_double,SNR(i),'measured');
          hard_coded  = zeros(1,N);
          for hard_j=1:N
              if BCH_receive(hard_j)>0
                 hard_coded(hard_j)=1;
              end
          end
          %BCH解码 
          BCHdecode = gf(zeros(1,K));
          hard_BCH  = hard_coded;
          [BCHdecode_i,error_num]=bchdec(gf(hard_BCH),N, K);
          BCHdecode = BCHdecode_i;
          BCHdecode_double = zeros(1,K);
 
          for gf_to_double_j=1:K
              if BCHdecode(gf_to_double_j)==1
                 BCHdecode_double(gf_to_double_j)=1;
              end
          end
          Err = biterr(BCHdecode_double,message);
          Num_err                 = Num_err+Err;
          Num_err
          Numbers                 = Numbers+1;
    end  
    Bit_err(i) = Num_err/(length(message)*Numbers);  
end
 
%曲线仿真
figure;
semilogy(SNR,Bit_err,'b-o');
xlabel('SNR');
ylabel('BER');
grid on;
save data.mat SNR Bit_err
A_045_BCH
相关文章
|
3月前
|
数据可视化
基于MATLAB的OFDM调制发射与接收仿真
基于MATLAB的OFDM调制发射与接收仿真
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
182 0
|
3月前
|
算法 机器人
基于SOA海鸥优化算法的PID控制器最优控制参数计算matlab仿真
本课题研究基于海鸥优化算法(SOA)优化PID控制器参数的方法,通过MATLAB仿真对比传统PID控制效果。利用SOA算法优化PID的kp、ki、kd参数,以积分绝对误差(IAE)为适应度函数,提升系统响应速度与稳定性。仿真结果表明,SOA优化的PID控制器在阶跃响应和误差控制方面均优于传统方法,具有更快的收敛速度和更强的全局寻优能力,适用于复杂系统的参数整定。
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
224 15
|
3月前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
475 5
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
3月前
|
传感器 算法 数据可视化
MATLAB来计算和仿真无人机飞行过程
使用MATLAB来计算和仿真无人机飞行过程中的运动参数是一个极其常见且强大的方法。这通常被称为无人机建模与仿真,是无人机飞控算法开发中不可或缺的一环。
128 1

热门文章

最新文章