基于蝙蝠算法实现电力系统经济调度(Matlab代码实现)

简介: 基于蝙蝠算法实现电力系统经济调度(Matlab代码实现)

目录

摘要:

1.蝙蝠优化算法的基本原理:

2.蝙蝠优化算法的流程:

3.仿真实验分析:


摘要:

基于Matalb平台,构建基于蝙蝠活动行为的蝙蝠优化算法,对一个含有6个火电机组的电力系统进行优化调度,其中优化调度的目标函数为火电机组运行成本最小,其中约束条件有:功率平衡约束,火电机组最大最小出力约束,火电机组爬坡约束,网络潮流约束,等。结果表明,所提的蝙蝠优化算法可以很好的完成电力系统优化调度决策任务。程序注释详细,出图美观,适合初学者学习入门智能优化算法或电力系统经济调度。

1.蝙蝠优化算法的基本原理:

蝙蝠算法是模拟蝙蝠发出和接收自身发出的超声波来捕食猎物这一行为提出的一

种全局型群智能优化算法。在该算法中,每只蝙蝠在搜索空间中的位置代表一个解,对

于不同的适应度函数,每只蝙蝠都有自己的适应度值,算法比较每只蝙蝠的适应度值来

找出当前全局最优位置,然后调整蝙蝠种群的脉冲发射频率、强度,朝着当前最优位置

不断搜索,最终找到全局最优解。

(1)  种群中的所有蝙蝠都用回声定位系统来判断距离,并且它们能够区分猎物与障

碍物。

(2)  蝙蝠在位置Xi以速度Vi 飞行。以固定频率fmin,强度Ao来搜捕猎物,它们能够

根据与猎物的距离自发调节发出声波的波长或者频率,在接近猎物时自发调整脉冲发射

频率ri。

(3)  假设声波强度的最小值为Amin ,最大值为Ao 。 蝙蝠的捕食过程可描述为:蝙蝠种群随机分布在搜索空间中,每只蝙蝠的位置为Xi( 1, 2,3,..,N),蝙蝠能够在位置Xi发出频率为fi强度为Ao的超声波搜索猎物,确定目标后,蝙蝠以速度Vi 向猎物飞行。并根据猎物与自己的距离实时调整飞行速度、声波强度和脉冲发射频率,逐渐向猎物靠近,最终成功捕食猎物。根据蝙蝠捕食过程,算法的迭代次数为t,蝙蝠个体i 发出超声波的频率、速度和位置在第t 代的更新公式如下:

image.gif (2-1)

image.gif (2-2、2-3)

当蝙蝠种群逐渐向全局最优解靠近时,算法就采用局部搜索策略,局部位置更新

公式如下:

image.gif (2-4)

2.蝙蝠优化算法的流程:

image.gif

3.仿真实验分析:

以下为部分运行结果,主要是分为电力系统稳态运行情况下的和电力系统暂稳态运行情况下的:

image.gif

image.gif

image.gif

image.gif

部分代码:

clc; % 清除命令窗口中的任何工作或数据
clear; % 在使用前清除所有可变量的值
close all; % 关闭所有打开的图片
%% 导入机组参数与模型
doc_name = 'ED_result.doc';
plot_Fcost = 'FuelCostCurve.png';
plot_Iterr = 'ItterationsCurve.png';
plot_Ploss = 'PowerLossCurve.png';
bar_Ploss = 'PowerLossChart.png';
bar_Fcost = 'FuelCostBar.png';
hvdc_Losses = 'HVDC_loses.png';
transmission_modes = ["HVAC","HVDC"];
source = ["6thermal","4thermal","2wind"];
% 分配输入与输出的各种参数
[power_loss,F_cost,iterrations,sw_loss,cond_loss,tl_loss,F_cost_inst] = deal(zeros);
demand = [120 150 180 210 240 270 300 330 360 390 420]; % 定义各个节点的负荷需求
load_demand_values = numel(demand); % 使用numel函数对矩阵的元素进行计数
print = fopen(doc_name,'w+');
% 定义全球变量,可用于所有函数
global fuel_coefficients B power_demand Pg_limits transmission_type ...
    Cond_loss SW_loss TL_loss convergence_time start_timing DRi URi ...
    n f_cost beta tao time instability inst_const
% 有5列燃料成本系数的燃料系数矩阵(发电机燃料消耗矩阵)
fuel_coefficients = [0.00375 2.00 240  0 0;
    0.01750 1.75 200 0 0;
    0.06250 1.00 220 40 0.008;
    0.00834 3.25 200 30 0.009;
    0.02500 3.00 220 0 0;
    0.02500 3.00 190 0 0];
generator_limits = [50 200;20 80;15 50;10 35;10 30;12 40];% 定义发电机功率限制
% 发电机上下爬坡功率定义
DRi= [85 22 15 16 9 16];
URi= [65 12 12 8 6 8];
beta = 1.75;
tao = 2.85;
time = 10; % 发电机暂稳态时间定义
instability = false(); % 将第一次计算设定为没有不稳定因素
n = length(fuel_coefficients(:,1)); %返回fuel_coefficients变量的长度
%% 循坏开始
for type = 1:numel(transmission_modes)% 在每个模式中循环往复
    transmission_type = transmission_modes(type);
    fprintf(print,strcat('ECONOMIC DISPATCH FOR _', ... 
        ' USING NOVEL BAT OPTIMIZATION ALGORITHM \n'));
    %% Step 1:找到B矩阵
    loss_coef = [0.000218 0.000103 0.000009 -0.000010 0.000002 0.000027
        0.000103 0.000181 0.000004 -0.000015 0.000002 0.000030
        0.000009 0.000004 0.000417 -0.000131 -0.000153 -0.000107
        -0.000010 -0.000015 -0.000131 0.000221 0.000094 0.000050
        0.000002 0.000002 -0.000153 0.000094 0.000243 -0.000000
        0.000027 0.000030 -0.000107 0.000050 -0.000000 0.000358];

image.gif

完整代码:

链接:https://pan.baidu.com/s/1E9Lo3KeW3Fia30BLwtDbPA 

提取码:zxyf

--来自百度网盘超级会员V3的分享

相关文章
|
18天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
24天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
4天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
12天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
20天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
12天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
21天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
18天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。