【分布式技术专题】RocketMQ延迟消息实现原理和源码分析

简介: 【分布式技术专题】RocketMQ延迟消息实现原理和源码分析

痛点背景


业务场景

假设有这么一个需求,用户下单后如果30分钟未支付,则该订单需要被关闭。你会怎么做?


之前方案

最简单的做法,可以服务端启动个定时器,隔个几秒扫描数据库中待支付的订单,如果(当前时间-订单创建时间)>30分钟,则关闭订单。


方案评估


  • 优点:是实现简单,缺点呢?
  • 缺点:定时扫描意味着隔个几秒就得查一次数据库,频率高的情况下,如果数据库中订单总量特别大,这种高频扫描会对数据库带来一定压力,待付款订单特别多时(做个爆品秒杀活动,或者啥促销活动),若一次性查到内存中,容易引起宕机,需要分页查询,多少也会有一定数据库层面压力。



延时队列出现


  • 能够在指定时间间隔后触发某个业务操作
  • 能够应对业务数据量特别大的特殊场景


RocketMQ延时消息能够完美的解决上述需求,正常的消息在投递后会立马被消费者所消费,而延时消息在投递时,需要设置指定的延时级别(不同延迟级别对应不同延迟时间),即等到特定的时间间隔后消息才会被消费者消费,这样就将数据库层面的压力转移到了MQ中,也不需要手写定时器,降低了业务复杂度,同时MQ自带削峰功能,能够很好的应对业务高峰。




功能特点


  • RocketMQ支持发送延迟消息,但不支持任意时间的延迟消息的设置,仅支持内置预设值的延迟时间间隔的延迟消息;
  • 预设值的延迟时间间隔为:1s、 5s、 10s、 30s、 1m、 2m、 3m、 4m、 5m、 6m、 7m、 8m、 9m、 10m、 20m、 30m、 1h、 2h;
  • 在消息创建的时候,调用 setDelayTimeLevel(int level) 方法设置延迟时间;
  • broker在接收到延迟消息的时候会把对应延迟级别的消息先存储到对应的延迟队列中,等延迟消息时间到达时,会把消息重新存储到对应的topic的queue里面。




Broker处理延迟消息


延时队列生产者端:


延时消息的关键点在于Producer生产者需要给消息设置特定延时级别,消费端代码与正常消费者没有差别。


public class Producer {
  private String messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h";
    public static void main(String[] args) throws MQClientException, InterruptedException {
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
        //设置namesrv地址
        producer.setNamesrvAddr("111.231.110.149:9876");
        //启动生产者
        producer.start();
        //发送10条消息
        for (int i = 0; i < 10; i++) {
            try {
                Message msg = new Message("TopicTest" /* Topic */,
                    "TagA" /* Tag */,
                    ("test message" + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
                );
                //设置消息延时级别  3对应10秒后发送
                //延时级别1对应延时1秒后发送消息
                //延时级别2对应延时5秒后发送消息
                //延时级别3对应延时10秒后发送消息
                //以此类推。
                msg.setDelayTimeLevel(3);
                SendResult sendResult = producer.send(msg);
                System.out.printf("%s%n", sendResult);
            } catch (Exception e) {
                e.printStackTrace();
                Thread.sleep(1000);
            }
        }
        /*
         * Shut down once the producer instance is not longer in use.
         */
        producer.shutdown();
    }
}
复制代码


初始化


DefaultMessageStore在启动时,会调用ScheduleMessageService#load()方法来加载消息消费进度和初始化延迟级别对应map,然后调用ScheduleMessageService#start()方法来启动类


load方法

public boolean load() {
        boolean result = super.load();
        result = result && this.parseDelayLevel();
        return result;
}
复制代码



ScheduleMessageService继承自ConfigManager类,super.load()方法对应

public boolean load() {
        String fileName = null;
        try {
            fileName = this.configFilePath();
            String jsonString = MixAll.file2String(fileName);
            if (null == jsonString || jsonString.length() == 0) {
                return this.loadBak();
            } else {
                this.decode(jsonString);
                log.info("load " + fileName + " OK");
                return true;
            }
        } catch (Exception e) {
            log.error("load " + fileName + " failed, and try to load backup file", e);
            return this.loadBak();
        }
}
复制代码



延时队列源码分析:


先从延时消息延迟级别设置与broker端消息持久化入手。


具体实现

RocketMQ发送延时消息时先把消息按照延迟时间段发送到指定的队列中(rocketmq把每种延迟时间段的消息都存放到同一个队列中)然后通过一个定时器进行轮训这些队列,查看消息是否到期,如果到期就把这个消息发送到指定topic的队列中,这样的好处是同一队列中的消息延时时间是一致的,还有一个好处是这个队列中的消息时按照消息到期时间进行递增排序的,说的简单直白就是队列中消息越靠前的到期时间越早。


image.png

启动延迟消息定时任务


如果想要深入了解的可以看一下ScheduleMessageService这个类

image.png

内部变量含义


延时消息定时投递相关具体实现代码在ScheduleMessageService中,先看下变量定义

image.png


  • delayLevelTable定义了延迟级别和延迟时间的对应关系
  • offsetTable存放延延迟级别对应的队列消费的offset
ScheduleMessageService.start()

image.png

延迟消息投递

image.png


其中根据,delayLevel获取消费队列id的方法如下,即queueId = delayLevel-1

public static int delayLevel2QueueId(final int delayLevel) {
        return delayLevel - 1;
}



image.png


核心逻辑就是取出tagCode(延时消息持久化时,tagsCode存储的是消息投递时间),解析成消息投递时间,与当前时间戳做差,判断是否应该进行消息投递,具体进行消息投递的方法,在if (countdown <= 0)中,看下代码


image.png

每个扫描任务主要是把队列中所有到期的消息都拿出来,并发送到指定的topic下,并把延迟队列中的消息删除


重新投递实现


重新构建投递消息的关键点在于messageTimeup中,其构建了一个新的消息,并从延时消息属性中恢复出了原有的topic,queueId,再调用putMessage重新进行投递。


image.png



总结


  • 优点:设计简单,把所有相同延迟时间的消息都先放到一个队列中,定时扫描,可以保证消息消费的有序性
  • 缺点:定时器采用了timer,timer是单线程运行,如果延迟消息数量很大的情况下,可能单线程处理不过来,造成消息到期后也没有发送出去的情况
  • 改进点:可以在每个延迟队列上各采用一个timer,或者使用timer进行扫描,加一个线程池对消息进行处理,这样可以提供效率



基本思路已经介绍完,梳理下延时消息实现思路


  • producer端设置消息delayLevel延迟级别,消息属性DELAY中存储了对应了延时级别
  • broker端收到消息后,判断延时消息延迟级别,如果大于0,则备份消息原始topic,queueId,并将消息topic改为延时消息队列特定topic(SCHEDULE_TOPIC),queueId改为延时级别-1
  • mq服务端ScheduleMessageService中,为每一个延迟级别单独设置一个定时器,定时(每隔1秒)拉取对应延迟级别的消费队列
  • 根据消费偏移量offset从commitLog中解析出对应消息
  • 从消息tagsCode中解析出消息应当被投递的时间,与当前时间做比较,判断是否应该进行投递
  • 若到达了投递时间,则构建一个新的消息,并从消息属性中恢复出原始的topic,queueId,并清除消息延迟属性,从新进行消息投递













相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
3月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
918 4
|
4月前
|
数据采集 传感器 监控
Modbus 与 MQTT 协议兼容:MyEMS 的泛在能源数据采集技术实现
MyEMS深度融合Modbus与MQTT协议,破解能源数据采集中协议碎片化、网络异构、数据孤岛等难题。通过Modbus接入95%以上工业设备,实现现场数据精准“拉取”;依托MQTT构建高效物联网传输通道,支持多源数据主动“推送”与云端集成。边缘侧采集规整,中心侧汇聚分析,形成统一、可靠、低延迟的数据流。该架构兼具高兼容性、强扩展性与低运维成本,广泛应用于工业园区、商业楼宇及集团型企业,支撑实时监控、AI分析与跨系统融合,打造泛在互联的能源数据底座,助力企业实现全面智慧能源管理。
389 6
|
4月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
486 4
|
3月前
|
机器学习/深度学习 监控 PyTorch
68_分布式训练技术:DDP与Horovod
随着大型语言模型(LLM)规模的不断扩大,从早期的BERT(数亿参数)到如今的GPT-4(万亿级参数),单卡训练已经成为不可能完成的任务。分布式训练技术应运而生,成为大模型开发的核心基础设施。2025年,分布式训练技术已经发展到相当成熟的阶段,各种优化策略和框架不断涌现,为大模型训练提供了强大的支持。
|
4月前
|
JSON 监控 Java
Elasticsearch 分布式搜索与分析引擎技术详解与实践指南
本文档全面介绍 Elasticsearch 分布式搜索与分析引擎的核心概念、架构设计和实践应用。作为基于 Lucene 的分布式搜索引擎,Elasticsearch 提供了近实时的搜索能力、强大的数据分析功能和可扩展的分布式架构。本文将深入探讨其索引机制、查询 DSL、集群管理、性能优化以及与各种应用场景的集成,帮助开发者构建高性能的搜索和分析系统。
366 0
|
8月前
|
安全 JavaScript 前端开发
HarmonyOS NEXT~HarmonyOS 语言仓颉:下一代分布式开发语言的技术解析与应用实践
HarmonyOS语言仓颉是华为专为HarmonyOS生态系统设计的新型编程语言,旨在解决分布式环境下的开发挑战。它以“编码创造”为理念,具备分布式原生、高性能与高效率、安全可靠三大核心特性。仓颉语言通过内置分布式能力简化跨设备开发,提供统一的编程模型和开发体验。文章从语言基础、关键特性、开发实践及未来展望四个方面剖析其技术优势,助力开发者掌握这一新兴工具,构建全场景分布式应用。
837 35
|
9月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
|
8月前
|
NoSQL 算法 安全
分布式锁—1.原理算法和使用建议
本文主要探讨了Redis分布式锁的八大问题,包括非原子操作、忘记释放锁、释放其他线程的锁、加锁失败处理、锁重入问题、锁竞争问题、锁超时失效及主从复制问题,并提供了相应的优化措施。接着分析了Redis的RedLock算法,讨论其优缺点以及分布式专家Martin对其的质疑。此外,文章对比了基于Redis和Zookeeper(zk)的分布式锁实现原理,包括获取与释放锁的具体流程。最后总结了两种分布式锁的适用场景及使用建议,指出Redis分布式锁虽有性能优势但模型不够健壮,而zk分布式锁更稳定但部署成本较高。实际应用中需根据业务需求权衡选择。
|
9月前
|
SQL 大数据 数据库
RocketMQ实战—1.订单系统面临的技术挑战
本文详细分析了一个订单系统的设计与技术挑战。首先,介绍了订单系统的整体架构、业务流程及负载情况,包括电商购物流程、核心和非核心业务流程,以及真实生产中的负载压力。接着,探讨了系统面临的主要技术问题:支付后发券、发红包等操作导致性能下降;退款流程复杂且易失败;与第三方系统耦合带来的不稳定;大数据团队直接查询数据库影响性能;秒杀活动时数据库压力剧增等。最后,通过放大100倍压力的方法,梳理了高并发下的技术挑战,如核心链路优化、后台线程补偿机制、第三方系统解耦、数据获取方式改进等,为订单系统的优化提供了全面的参考。
RocketMQ实战—1.订单系统面临的技术挑战
|
6月前
|
消息中间件 数据管理 Serverless
阿里云消息队列 Apache RocketMQ 创新论文入选顶会 ACM FSE 2025
阿里云消息团队基于 Apache RocketMQ 构建 Serverless 消息系统,适配多种主流消息协议(如 RabbitMQ、MQTT 和 Kafka),成功解决了传统中间件在可伸缩性、成本及元数据管理等方面的难题,并据此实现 ApsaraMQ 全系列产品 Serverless 化,助力企业提效降本。