【Java原理探索】教你如何使用异步神器CompletableFuture| 8月更文挑战

简介: 【Java原理探索】教你如何使用异步神器CompletableFuture| 8月更文挑战

前提概要


在java8以前,我们使用java的多线程编程,一般是通过Runnable中的run方法来完成,这种方式,有个很明显的缺点,就是,没有返回值。这时候,大家可能会去尝试使用Callable中的call方法,然后用Future返回结果,如下:

public static void main(String[] args) throws Exception {
        ExecutorService executor = Executors.newSingleThreadExecutor();
        Future<String> stringFuture = executor.submit(new Callable<String>() {
            @Override
            public String call() throws Exception {
                Thread.sleep(2000);
                return "async thread";
            }
        });
        Thread.sleep(1000);
        System.out.println("main thread");
        System.out.println(stringFuture.get());
}
复制代码
  • 通过观察控制台,我们发现先打印 main thread ,一秒后打印 async thread,似乎能满足我们的需求。但仔细想我们发现一个问题,当调用future的get()方法时,当前主线程是堵塞的,这好像并不是我们想看到的。
  • 另一种获取返回结果的方式是先轮询,可以调用isDone,等完成再获取,但这也不能让我们满意.
  1. 很多个异步线程执行时间可能不一致,我的主线程业务不能一直等着,这时候我可能会想要只等最快的线程执行完或者最重要的那个任务执行完,亦或者我只等1秒钟,至于没返回结果的线程我就用默认值代替.
  2. 我两个异步任务之间执行独立,但是第二个依赖第一个的执行结果.


java8的CompletableFuture,就在这混乱且不完美的多线程江湖中闪亮登场了.CompletableFuture让Future的功能和使用场景得到极大的完善和扩展,提供了函数式编程能力,使代码更加美观优雅,而且可以通过回调的方式计算处理结果,对异常处理也有了更好的处理手段.


CompletableFuture源码中有四个静态方法用来执行异步任务:





创建任务


public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier){..}
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,Executor executor){..}
public static CompletableFuture<Void> runAsync(Runnable runnable){..}
public static CompletableFuture<Void> runAsync(Runnable runnable,Executor executor){..} 
复制代码


  • 如果有多线程的基础知识,我们很容易看出,run开头的两个方法,用于执行没有返回值的任务,因为它的入参是Runnable对象。
  • 而supply开头的方法显然是执行有返回值的任务了,至于方法的入参,如果没有传入Executor对象将会使用ForkJoinPool.commonPool() 作为它的线程池执行异步代码.在实际使用中,一般我们使用自己创建的线程池对象来作为参数传入使用,这样速度会快些.


执行异步任务的方式也很简单,只需要使用上述方法就可以了:

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    //....执行任务
    return "hello";
}, executor)
复制代码



接下来看一下获取执行结果的几个方法。

V get();
V get(long timeout,Timeout unit);
T getNow(T defaultValue);
T join();
复制代码



  • 上面两个方法是Future中的实现方式,get()会堵塞当前的线程,这就造成了一个问题,如果执行线程迟迟没有返回数据,get()会一直等待下去,因此,第二个get()方法可以设置等待的时间.
  • getNow()方法比较有意思,表示当有了返回结果时会返回结果,如果异步线程抛了异常会返回自己设置的默认值.

接下来以一些场景的实例来介绍一下CompletableFuture中其他一些常用的方法


thenAccept()
public CompletionStage<Void> thenAccept(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action,Executor executor);
复制代码



  • 功能:当前任务正常完成以后执行,当前任务的执行结果可以作为下一任务的输入参数,无返回值.
  • 场景:执行任务A,同时异步执行任务B,待任务B正常返回后,B的返回值执行任务C,任务C无返回值
CompletableFuture<String> futureA = CompletableFuture.supplyAsync(() -> "任务A");
CompletableFuture<String> futureB = CompletableFuture.supplyAsync(() -> "任务B");
CompletableFuture<String> futureC = futureB.thenApply(b -> {
      System.out.println("执行任务C.");
      System.out.println("参数:" + b);//参数:任务B
      return "a";
});
thenRun(..)
public CompletionStage<Void> thenRun(Runnable action);
public CompletionStage<Void> thenRunAsync(Runnable action);
public CompletionStage<Void> thenRunAsync(Runnable action,Executor executor);
复制代码



  • 功能:对不关心上一步的计算结果,执行下一个操作
  • 场景:执行任务A,任务A执行完以后,执行任务B,任务B不接受任务A的返回值(不管A有没有返回值),也无返回值
CompletableFuture<String> futureA = CompletableFuture.supplyAsync(() -> "任务A");
futureA.thenRun(() -> System.out.println("执行任务B"));
thenApply(..)
public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U>  thenApplyAsync(Function<? super T,? extends U> fn, Executor executor)
复制代码



  • 功能:当前任务正常完成以后执行,当前任务的执行的结果会作为下一任务的输入参数,有返回值
  • 场景:多个任务串联执行,下一个任务的执行依赖上一个任务的结果,每个任务都有输入和输出

异步执行任务A,当任务A完成时使用A的返回结果resultA作为入参进行任务B的处理,可实现任意多个任务的串联执行

CompletableFuture<String> futureA = CompletableFuture.supplyAsync(() -> "hello");
CompletableFuture<String> futureB = futureA.thenApply(s->s + " world");
CompletableFuture<String> future3 = futureB.thenApply(String::toUpperCase);
System.out.println(future3.join());
复制代码



上面的代码,我们当然可以先调用future.join()先得到任务A的返回值,然后再拿返回值做入参去执行任务B,而thenApply的存在就在于帮我简化了这一步,我们不必因为等待一个计算完成而一直阻塞着调用线程,而是告诉CompletableFuture你啥时候执行完就啥时候进行下一步. 就把多个任务串联起来了.

thenCombine(..)  thenAcceptBoth(..)  runAfterBoth(..)
public <U,V> CompletableFuture<V>  thenCombine(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn)
public <U,V> CompletableFuture<V>  thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn)
public <U,V> CompletableFuture<V>  thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn, Executor executor)
复制代码



  • 功能:结合两个CompletionStage的结果,进行转化后返回
  • 场景:需要根据商品id查询商品的当前价格,分两步,查询商品的原始价格和折扣,这两个查询相互独立,当都查出来的时候用原始价格乘折扣,算出当前价格. 使用方法:thenCombine(..)
CompletableFuture<Double> futurePrice = CompletableFuture.supplyAsync(() -> 100d);
 CompletableFuture<Double> futureDiscount = CompletableFuture.supplyAsync(() -> 0.8);
 CompletableFuture<Double> futureResult = futurePrice.thenCombine(futureDiscount, (price, discount) -> price * discount);
 System.out.println("最终价格为:" + futureResult.join()); //最终价格为:80.0
复制代码



  • thenCombine(..)是结合两个任务的返回值进行转化后再返回,那如果不需要返回呢,那就需要
  • thenAcceptBoth(..),同理,如果连两个任务的返回值也不关心呢,那就需要runAfterBoth了,如果理解了上面三个方法,thenApply,thenAccept,thenRun,这里就不需要单独再提这两个方法了,只在这里提一下.
thenCompose(..)
public <U> CompletableFuture<U>  thenCompose(Function<? super T,? extends CompletionStage<U>> fn)
public <U> CompletableFuture<U>  thenComposeAsync(Function<? super T,? extends CompletionStage<U>> fn)
public <U> CompletableFuture<U>  thenComposeAsync(Function<? super T,? extends CompletionStage<U>> fn, Executor executor)
复制代码



功能:这个方法接收的输入是当前的CompletableFuture的计算值,返回结果将是一个新的CompletableFuture


这个方法和thenApply非常像,都是接受上一个任务的结果作为入参,执行自己的操作,然后返回.那具体有什么区别呢?


  • thenApply():它的功能相当于将CompletableFuture转换成CompletableFuture,改变的是同一个CompletableFuture中的泛型类型
  • thenCompose():用来连接两个CompletableFuture,返回值是一个新的CompletableFuture
CompletableFuture<String> futureA = CompletableFuture.supplyAsync(() -> "hello");
CompletableFuture<String> futureB = futureA.thenCompose(s -> CompletableFuture.supplyAsync(() -> s + "world"));
CompletableFuture<String> future3 = futureB.thenCompose(s -> CompletableFuture.supplyAsync(s::toUpperCase));
System.out.println(future3.join());
复制代码
applyToEither(..)  acceptEither(..)  runAfterEither(..)
public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn,Executor executor);
复制代码



功能:执行两个CompletionStage的结果,那个先执行完了,就是用哪个的返回值进行下一步操作 场景:假设查询商品a,有两种方式,A和B,但是A和B的执行速度不一样,我们希望哪个先返回就用那个的返回值.

CompletableFuture<String> futureA = CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "通过方式A获取商品a";
        });
CompletableFuture<String> futureB = CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "通过方式B获取商品a";
        });
CompletableFuture<String> futureC = futureA.applyToEither(futureB, product -> "结果:" + product);
System.out.println(futureC.join()); //结果:通过方式A获取商品a
复制代码



同样的道理,applyToEither的兄弟方法还有acceptEither(),runAfterEither(),我想不需要我解释你也知道该怎么用了.

exceptionally(..)
public CompletionStage<T> exceptionally(Function<Throwable, ? extends T> fn);
复制代码



  • 功能:当运行出现异常时,调用该方法可进行一些补偿操作,如设置默认值.
  • 场景:异步执行任务A获取结果,如果任务A执行过程中抛出异常,则使用默认值100返回.
CompletableFuture<String> futureA = CompletableFuture.
                supplyAsync(() -> "执行结果:" + (100 / 0))
                .thenApply(s -> "futureA result:" + s)
                .exceptionally(e -> {
                    System.out.println(e.getMessage()); //java.lang.ArithmeticException: / by zero
                    return "futureA result: 100";
                });
CompletableFuture<String> futureB = CompletableFuture.
                supplyAsync(() -> "执行结果:" + 50)
                .thenApply(s -> "futureB result:" + s)
                .exceptionally(e -> "futureB result: 100");
System.out.println(futureA.join());//futureA result: 100
System.out.println(futureB.join());//futureB result:执行结果:50
复制代码



上面代码展示了正常流程和出现异常的情况,可以理解成catch,根据返回值可以体会下.

whenComplete(..)
public CompletionStage<T> whenComplete(BiConsumer<? super T, ? super Throwable> action);
public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action);
public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action,Executor executor);
复制代码



功能:当CompletableFuture的计算结果完成,或者抛出异常的时候,都可以进入whenComplete方法执行,举个栗子

CompletableFuture<String> futureA = CompletableFuture.
                supplyAsync(() -> "执行结果:" + (100 / 0))
                .thenApply(s -> "apply result:" + s)
                .whenComplete((s, e) -> {
                    if (s != null) {
                        System.out.println(s);//未执行
                    }
                    if (e == null) {
                        System.out.println(s);//未执行
                    } else {
                        System.out.println(e.getMessage());//java.lang.ArithmeticException: / by zero
                    }
                })
                .exceptionally(e -> {
                    System.out.println("ex"+e.getMessage()); //ex:java.lang.ArithmeticException: / by zero
             return "futureA result: 100"; }); 
System.out.println(futureA.join());//futureA result: 100
复制代码



根据控制台,我们可以看出执行流程是这样,supplyAsync->whenComplete->exceptionally,可以看出并没有进入thenApply执行,原因也显而易见,在supplyAsync中出现了异常,thenApply只有当正常返回时才会去执行.而whenComplete不管是否正常执行,还要注意一点,whenComplete是没有返回值的.


  上面代码我们使用了函数式的编程风格并且先调用whenComplete再调用exceptionally,如果我们先调用exceptionally,再调用whenComplete会发生什么呢,我们看一下:

CompletableFuture<String> futureA = CompletableFuture.
                supplyAsync(() -> "执行结果:" + (100 / 0))
                .thenApply(s -> "apply result:" + s)
                .exceptionally(e -> {
                    System.out.println("ex:"+e.getMessage()); //ex:java.lang.ArithmeticException: / by zero
                    return "futureA result: 100";
                })
                .whenComplete((s, e) -> {
                    if (e == null) {
                        System.out.println(s);//futureA result: 100
                    } else {
                        System.out.println(e.getMessage());//未执行
                    }
                })
                ;
System.out.println(futureA.join());//futureA result: 100
复制代码



代码先执行了exceptionally后执行whenComplete,可以发现,由于在exceptionally中对异常进行了处理,并返回了默认值,whenComplete中接收到的结果是一个正常的结果,被exceptionally美化过的结果,这一点需要留意一下.

handle(..)
public <U> CompletionStage<U> handle(BiFunction<? super T, Throwable, ? extends U> fn);
public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn);
public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn,Executor executor);
复制代码



功能:当CompletableFuture的计算结果完成,或者抛出异常的时候,可以通过handle方法对结果进行处理

CompletableFuture<String> futureA = CompletableFuture.
                supplyAsync(() -> "执行结果:" + (100 / 0))
                .thenApply(s -> "apply result:" + s)
                .exceptionally(e -> {
                    System.out.println("ex:" + e.getMessage()); //java.lang.ArithmeticException: / by zero
                    return "futureA result: 100";
                })
                .handle((s, e) -> {
                    if (e == null) {
                        System.out.println(s);//futureA result: 100
                    } else {
                        System.out.println(e.getMessage());//未执行
                    }
                    return "handle result:" + (s == null ? "500" : s);
                });
System.out.println(futureA.join());//handle result:futureA result: 100
复制代码



通过控制台,我们可以看出,最后打印的是handle result:futureA result: 100,执行exceptionally后对异常进行了"美化",返回了默认值,那么handle得到的就是一个正常的返回,我们再试下,先调用handle再调用exceptionally的情况.

CompletableFuture<String> futureA = CompletableFuture.
                supplyAsync(() -> "执行结果:" + (100 / 0))
                .thenApply(s -> "apply result:" + s)
                .handle((s, e) -> {
                    if (e == null) {
                        System.out.println(s);//未执行
                    } else {
                        System.out.println(e.getMessage());//java.lang.ArithmeticException: / by zero
                    }
                    return "handle result:" + (s == null ? "500" : s);
                })
                .exceptionally(e -> {
                    System.out.println("ex:" + e.getMessage()); //未执行
                    return "futureA result: 100";
                });
System.out.println(futureA.join());//handle result:500
复制代码



根据控制台输出,可以看到先执行handle,打印了异常信息,并对接过设置了默认值500,exceptionally并没有执行,因为它得到的是handle返回给它的值,由此我们大概推测handle和whenComplete的区别


  1. 都是对结果进行处理,handle有返回值,whenComplete没有返回值
  2. 由于1的存在,使得handle多了一个特性,可在handle里实现exceptionally的功能
allOf(..)  anyOf(..)
public static CompletableFuture<Void>  allOf(CompletableFuture<?>... cfs)
public static CompletableFuture<Object>  anyOf(CompletableFuture<?>... cfs)
复制代码
  • allOf:当所有的CompletableFuture都执行完后执行计算
  • anyOf:最快的那个CompletableFuture执行完之后执行计算

场景二:查询一个商品详情,需要分别去查商品信息,卖家信息,库存信息,订单信息等,这些查询相互独立,在不同的服务上,假设每个查询都需要一到两秒钟,要求总体查询时间小于2秒.

public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newFixedThreadPool(4);
        long start = System.currentTimeMillis();
        CompletableFuture<String> futureA = CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(1000 + RandomUtils.nextInt(1000));
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "商品详情";
        },executorService);
        CompletableFuture<String> futureB = CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(1000 + RandomUtils.nextInt(1000));
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "卖家信息";
        },executorService);
        CompletableFuture<String> futureC = CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(1000 + RandomUtils.nextInt(1000));
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "库存信息";
        },executorService);
        CompletableFuture<String> futureD = CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(1000 + RandomUtils.nextInt(1000));
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "订单信息";
        },executorService);
        CompletableFuture<Void> allFuture = CompletableFuture.allOf(futureA, futureB, futureC, futureD);
        allFuture.join();
        System.out.println(futureA.join() + futureB.join() + futureC.join() + futureD.join());
        System.out.println("总耗时:" + (System.currentTimeMillis() - start));
    }





相关文章
|
2月前
|
Java 流计算
利用java8 的 CompletableFuture 优化 Flink 程序
本文探讨了Flink使用avatorscript脚本语言时遇到的性能瓶颈,并通过CompletableFuture优化代码,显著提升了Flink的QPS。文中详细介绍了avatorscript的使用方法,包括自定义函数、从Map中取值、使用Java工具类及AviatorScript函数等,帮助读者更好地理解和应用avatorscript。
利用java8 的 CompletableFuture 优化 Flink 程序
|
1月前
|
存储 Java 关系型数据库
高效连接之道:Java连接池原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。频繁创建和关闭连接会消耗大量资源,导致性能瓶颈。为此,Java连接池技术通过复用连接,实现高效、稳定的数据库连接管理。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接池的基本操作、配置和使用方法,以及在电商应用中的具体应用示例。
74 5
|
2月前
|
存储 算法 Java
Java HashSet:底层工作原理与实现机制
本文介绍了Java中HashSet的工作原理,包括其基于HashMap实现的底层机制。通过示例代码展示了HashSet如何添加元素,并解析了add方法的具体过程,包括计算hash值、处理碰撞及扩容机制。
|
3天前
|
监控 Java API
探索Java NIO:究竟在哪些领域能大显身手?揭秘原理、应用场景与官方示例代码
Java NIO(New IO)自Java SE 1.4引入,提供比传统IO更高效、灵活的操作,支持非阻塞IO和选择器特性,适用于高并发、高吞吐量场景。NIO的核心概念包括通道(Channel)、缓冲区(Buffer)和选择器(Selector),能实现多路复用和异步操作。其应用场景涵盖网络通信、文件操作、进程间通信及数据库操作等。NIO的优势在于提高并发性和性能,简化编程;但学习成本较高,且与传统IO存在不兼容性。尽管如此,NIO在构建高性能框架如Netty、Mina和Jetty中仍广泛应用。
14 3
|
3天前
|
安全 算法 Java
Java CAS原理和应用场景大揭秘:你掌握了吗?
CAS(Compare and Swap)是一种乐观锁机制,通过硬件指令实现原子操作,确保多线程环境下对共享变量的安全访问。它避免了传统互斥锁的性能开销和线程阻塞问题。CAS操作包含三个步骤:获取期望值、比较当前值与期望值是否相等、若相等则更新为新值。CAS广泛应用于高并发场景,如数据库事务、分布式锁、无锁数据结构等,但需注意ABA问题。Java中常用`java.util.concurrent.atomic`包下的类支持CAS操作。
19 2
|
1月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
1月前
|
Java
Java之CountDownLatch原理浅析
本文介绍了Java并发工具类`CountDownLatch`的使用方法、原理及其与`Thread.join()`的区别。`CountDownLatch`通过构造函数接收一个整数参数作为计数器,调用`countDown`方法减少计数,`await`方法会阻塞当前线程,直到计数为零。文章还详细解析了其内部机制,包括初始化、`countDown`和`await`方法的工作原理,并给出了一个游戏加载场景的示例代码。
Java之CountDownLatch原理浅析
|
1月前
|
Java 索引 容器
Java ArrayList扩容的原理
Java 的 `ArrayList` 是基于数组实现的动态集合。初始时,`ArrayList` 底层创建一个空数组 `elementData`,并设置 `size` 为 0。当首次添加元素时,会调用 `grow` 方法将数组扩容至默认容量 10。之后每次添加元素时,如果当前数组已满,则会再次调用 `grow` 方法进行扩容。扩容规则为:首次扩容至 10,后续扩容至原数组长度的 1.5 倍或根据实际需求扩容。例如,当需要一次性添加 100 个元素时,会直接扩容至 110 而不是 15。
Java ArrayList扩容的原理
|
1月前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
66 2
|
1月前
|
Java 数据格式 索引
使用 Java 字节码工具检查类文件完整性的原理是什么
Java字节码工具通过解析和分析类文件的字节码,检查其结构和内容是否符合Java虚拟机规范,确保类文件的完整性和合法性,防止恶意代码或损坏的类文件影响程序运行。
49 5