从网易云日推浅谈个性化推荐系统--基于用户的协同过滤算法

简介:

什么是个性化推荐系统?

其实个性化推荐系统早已渗透进我们的生活了,网易云音乐的“每日推荐”,淘宝的”猜你喜欢“,这些都是生活中非常常见的个性化推荐的案例。如今,随着大数据的发展,个性化推荐早已涉及诸多领域,比如电子商务(京东淘宝)、电影和电视网站(youtube)、个性化音乐网络电台(网易云音乐)、社交网络(QQ)、个性化阅读(微信读书)、基于位置的个性化服务(美团)等。推荐算法的本质是通过一定的方式将用户和物品联系起来,而不同的推荐系统也会根据实际情况采取不同的推荐方式。

一般来说一个完整的推荐系统一般包括以下三个参与方:

  1. 被推荐对象
  2. 推荐物品的提供者
  3. 提供推荐系统的网站

以网易云音乐的日推为例:

首先,推荐系统需要满足用户的需求,给用户推荐那些令他们感兴趣的音乐。其次,推荐系统要尽量让各个歌手的歌都能够被推荐给对其感兴趣的用户,而不是只推荐几个大流量歌手的歌。最后, 好的推荐系统设计,能够让推荐系统本身收集到高质量的用户反馈,不断完善推荐的质量,增加用户和网站的交互,提高网站的收入。如下图所示:

什么是好的推荐系统?

想要评判一个东西好不好,一定要有个标准。那么推荐系统好坏的标准是什么呢?试想一下为什么大家都喜欢网易云音乐的每日推荐而不喜欢今日头条的每日推送呢?最直观的感受就是网易云的日推歌曲你爱听,而头条的推送你很讨厌。所以说预测准确度是推荐系统领域最重要的指标(没有之一)

好的推荐系统不仅仅能够准确预测用户的行为,而且能够 扩展用户的视野,帮助用户发现那些他们可能会感兴趣,但却不那么容易发现的东西(比如网易云音乐经常给你推送那些非常好听但是比较冷门的歌曲)。同时,推荐系统还要能够帮助商家将那些被埋没在长尾中的好商品介绍给可能会对它们感兴趣的用户。

协同过滤(Collaborative Filtering)

为了让推荐结果符合用户口味,我们需要深入了解用户。如何才能了解一个人呢?《论语·公冶长》中说“听其言,观其行”,也就是说可以通过用户留下的文字和行为了解用户兴趣和需求。

实现个性化推荐的最理想情况是用户能主动告诉系统他喜欢什么,比如很久之前注册网易云音乐的时候会让用户选择喜欢什么类型的歌曲,但这种方法有 3 个缺点:首先,现在的自然语言理解技术很难理解用户用来描述兴趣的自然语言;其次,用户的兴趣是不断变化的,但用户不会不停地更新兴趣描述;最后,很多时候用户并不知道自己喜欢什么,或者很难用语言描述自己喜欢什么。

因此,我们需要通过算法自动发掘用户行为数据,从用户的行为中推测出用户的兴趣,从而给用户推荐满足他们兴趣的物品。

基于用户行为分析的推荐算法是个性化推荐系统的重要算法,学术界一般将这种类型的算法称为协同过滤算法(Collaborative Filtering Algorithm)。顾名思义,协同过滤就是指用户可以齐心协力,通过不断地和网站互动,使自己的推荐列表能够不断过滤掉自己不感兴趣的物品,从而越来越满足自己的需求。

既然是基于用户的行为分析,就必须要将用户的行为表示出来,下表给出了一种用户行为的表示方式(当然,在不同的系统中,每个用户所产生的行为也是不一样的),它将个用户行为表示为 6 部分,即产生行为的用户和行为的对象、行为的种类、产生行为的上下文、行为的内容和权重

表示 备注
user id 产生行为的用户的唯一标识
item id 产生行为的对象的唯一标识
behavior type 行为的种类(比如说是点赞还是收藏)
context 产生行为的上下文,包括时间和地点等信息
behavior weight 行为的权重(如果是听歌的行为,那么权重可以是听歌时常)
behavior content 行为的内容(如果是评论行为,那么就是评论的文本)

随着学术界的大佬们对协同过滤算法的深入研究,他们提出了很多方法,比如基于邻域的方法(neighborhood-based)、隐语义模型(latent factor model)、基于图的随机游走算法(random walk on graph) 等。在这些方法中,最著名的、在业界得到最广泛应用的算法是基于邻域的方法,而基于邻域的方法主要包含下面两种算法:

  • 基于用户的协同过滤算法(User-based Collaborative Filtering),简称 UserCF 或 UCF,这种算法给用户推荐和他兴趣相似的其他用户喜欢的物品。
  • 基于物品的协同过滤算法(Item-based Collaborative Filtering),简称 ItemCF 或 ICF,这种算法给用户推荐和他之前喜欢的物品相似的物品。

基于用户的协同过滤算法

在一个在线个性化推荐系统中,当一个用户 A 需要个性化推荐时,可以先找到和他有相似兴趣的其他用户,然后把那些用户喜欢的、而用户 A 没有听说过的物品推荐给 A。这种方法称为基于用户的协同过滤算法。

基于用户的协同过滤算法主要包括两个步骤:

  1. 找到和目标用户 A 兴趣相似的用户集合。
  2. 找到这个集合中的用户喜欢的,且目标用户 A 没有听说过的物品推荐给目标用户。

步骤 1 的关键就是计算两个用户的兴趣相似度。这里,协同过滤算法主要利用行为的相似度计算兴趣的相似度。

举个栗子 🌰:假设现在有三个用户 A、B、C,已经知道 A 连续 5 天都在听周杰伦和林俊杰的歌,B 连续 5 天在听刘德华和张学友的歌,C 连续听了 5 天林俊杰和张杰的歌,那么你说 A 和谁的兴趣相似度更高,自然是 C。

刚才是你在脑海中思考这个问题的,那如果让机器思考 A 和谁的兴趣相似度更高呢?

其实也很简单,不过在进行下一步的讲解之前,先让我们回顾下基本的数学知识:

在数学中,我们通过测量两个 向量的夹角的 余弦值来度量它们之间的相似性,两个向量有相同的指向时,余弦相似度的值为 1;两个向量夹角为 90° 时,余弦相似度的值为 0;两个向量指向完全相反的方向时,余弦相似度的值为-1。名曰:“ 余弦相似性”。最重要的是这一定律不仅仅适用在二维空间,对任何维度的 向量空间中都适用,因此余弦相似性常用于高维正空间。例如在 信息检索中,每个词项被赋予不同的维度,而一个文档由一个向量表示,其各个维度上的值对应于该词项在文档中出现的频率。余弦相似度因此可以给出两篇文档在其主题方面的相似度。

考虑到大多数人可能已经忘了怎么计算余弦相似度了,在这再给大家开个小灶,简单的回顾下计算方法,想要深入了解的,请自行 Google。

假设有二维向量 a,b 如下图所示:

则他们的余弦相似度为:

推广到多维向量 $a(a1,a2,a3,a4……)$,$b(b1,b2,b3,b4……)$:

理解了上述数学知识,接下来的就是基本操作了,首先我们先给定两个用户$i$和$j$,令$N(i)$表示$i$ 听过的歌的集合,$N(j)$表示$j$听过的歌的集合,那么$\left | N(i)\bigcap N(j) \right |$就表示$i$、$j$ 都听过的歌的集合,$\left | N(i)\left | \right |N(j) \right |$就表示$i$或 $j$ 听过的歌的集合总数,$W_{ij}$表示用户$i$和用户$j$的相似度。

我们来尝试计算下 A 和 D 之间的兴趣相似度:

“用户打开过的网页” 可以看出,A 和 D 都听过的歌只有 d,也就是 1 个。用户 A 打开过的网页数=3,用户 D 打开过的网页数=3。所以 A 和 D 的相似度$W_{AD}=\frac{1}{\sqrt{3*3}}=\frac{1}{3}$。其他的计算也是类似的。

在得到用户之间的相似度之后,我们要做的就是解决步骤 2的问题了,假设 e 是刚刚发布的新歌,用户 C 和用户 D 都已经听过了,那么如何计算 A 对新歌 e 的感兴趣程度呢?

得到用户之间的兴趣相似度后,UserCF 算法会给用户推荐和他兴趣最相似的 K 个用户喜欢的物品。如下的公式度量了 UserCF 算法中用户 u 对物品的感兴趣程度:

$$p(u,i)=\sum_{v\in S(u,K)\cap N(i)}^{ }W_{uv}r_{vi}$$

其中,$S (u, K)$包含和用户$ u $兴趣最接近的$ K $个用户,$N (i)$是对物品$ i $有过行为的用户集合,$W_{uv}$是用户$ u$ 和用户$v$ 的兴趣相似度,$r_{vi}$代表用户 $v$ 对物品的兴趣,因为使用的是单一行为的隐反馈数据,所以所有的 $r_{vi}$ =1。

上面一大段截取自《推荐系统实践》,可能很多人看到这公式和这解析有些云里雾里,简单来说就是:

$$p(A,e)=W_{AB}*R_{Be}+W_{AC}*R_{Ce}+W_{AD}*R_{De}$$

其中$P(A,e)$表示 A 对 e 的兴趣度,$W_{AB}$表示 A 与 B 的相似度,$R_{Be}$表示 B 对 e 的兴趣度 ,以此类推。因为我们这里用的不是评分制,而是考虑是否听过这首歌,那么 C 听了 e,C 对 e 的兴趣度就是 1,B 没听过这首歌,所以 B 对 e 的兴趣度为 0。

所以我们可以预测 A 对 e 的相似度为:

$$p(A,e)=\frac{1}{\sqrt{3*2}}*1+\frac{1}{\sqrt{3*3}}*1=\frac{1}{\sqrt{6}}+\frac{1}{3}=0.74158$$

总结

这篇文章从网易云音乐的每日推荐这个生活中很常见的例子,引出了什么是推荐系统,一个好的推荐系统是什么样子的,进而引出协同过滤的概念,并且介绍了什么是基于用户的协同过滤,同时还回顾了余弦相似性等数学知识。然而真正在实际的企业产品中,基于用户的协同过滤并不会这么简单,判断两个用户的相似程度也不是简简单单的使用余弦相似性就可以了,考虑到本文旨在让更多的人对个性化推荐有个简单的概念,本文就不详细展开了,推荐阅读相关的论文,下一篇文章将会介绍基于内容的协同过滤算法。

相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
139 55
|
2月前
|
机器学习/深度学习 搜索推荐 算法
协同过滤算法
协同过滤算法
120 0
|
20天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
109 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
7天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
34 3
|
22天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
34 8
|
1月前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
43 3
|
21天前
|
机器学习/深度学习 人工智能 算法
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
40 1
|
25天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
40 1
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
82 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络