日志分析实战之清洗日志小实例3:如何在spark shell中导入自定义包

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 日志分析实战之清洗日志小实例3:如何在spark shell中导入自定义包

加载


上一篇文章,生成了包,那么这个包该如何加载到spark环境中,并且为我们所使用。那么首先改如何加载这个包。

首先将这个包放到spark中的lib文件夹下。


6a5e600865f431968eba490e188e8b2f.jpg

在复制到Linux中,首先需要修改的就是权限。

我们看到用户和组的权限为500,并且用户,所属组,及其它用户都为满权限,

可以通过下面命令来实现

sudo chown 500:500 ScalaApacheAccessLogParser-master.jar


sudo chmod -R a+r ScalaApacheAccessLogParser-master.jar


sudo chmod -R a+w ScalaApacheAccessLogParser-master.jar


sudo chmod -R a+x ScalaApacheAccessLogParser-master.jar


通过上面命令即可实现授权。

授权完毕,接着我们就需要把这个包,加载到spark shell环境中。

./bin/spark-shell --jars lib/ScalaApacheAccessLogParser-master.jar

接着我们执行导入jar包

import com.alvinalexander.accesslogparser._


ea4844825645b7f84266b48734509dd7.jpg

至此我们就可以使用第三方包了。


问题:

同时尝试了比较多的导入方式,没有成功,记录下来共大家借鉴。

./bin/spark-shell –master spark://master:7077 –jars ScalaApacheAccessLogParser-master.jar


MASTER=local[4] ADD_JARS=/data/spark/lib/AlsApacheLogParser.jar ./bin/spark-shell

导入的时候,并不会报错,但是import的时候,报错。

05480c1f329c0d41ed4b75965cc54d3b.jpg

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
3月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
940 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
2月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
|
3月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
233 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
11天前
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
|
4月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
468 3
|
1月前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
MySQL事务日志-Undo Log工作原理分析
|
2月前
|
JSON 安全 API
.net 自定义日志类
在.NET中,创建自定义日志类有助于更好地管理日志信息。示例展示了如何创建、配置和使用日志记录功能,包括写入日志文件、设置日志级别、格式化消息等。注意事项涵盖时间戳、日志级别、JSON序列化、线程安全、日志格式、文件处理及示例使用。请根据需求调整代码。
53 13
|
2月前
|
存储 监控 安全
什么是事件日志管理系统?事件日志管理系统有哪些用处?
事件日志管理系统是IT安全的重要工具,用于集中收集、分析和解释来自组织IT基础设施各组件的事件日志,如防火墙、路由器、交换机等,帮助提升网络安全、实现主动威胁检测和促进合规性。系统支持多种日志类型,包括Windows事件日志、Syslog日志和应用程序日志,通过实时监测、告警及可视化分析,为企业提供强大的安全保障。然而,实施过程中也面临数据量大、日志管理和分析复杂等挑战。EventLog Analyzer作为一款高效工具,不仅提供实时监测与告警、可视化分析和报告功能,还支持多种合规性报告,帮助企业克服挑战,提升网络安全水平。
115 2
|
4月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1840 14
MySQL事务日志-Redo Log工作原理分析
|
3月前
|
JSON Java 数据库
SpringBoot项目使用AOP及自定义注解保存操作日志
SpringBoot项目使用AOP及自定义注解保存操作日志
77 1

热门文章

最新文章