面试:第九章:分布式 、高并发、集群、负载均衡、高可用(上)

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
日志服务 SLS,月写入数据量 50GB 1个月
简介: 面试:第九章:分布式 、高并发、集群、负载均衡、高可用

分布式 :

分布式架构:把系统按照模块拆分成多个子系统,多个子系统分布在不同的网络计算机上相互协作完成业务流程,系统之间需要进行通信。

优点:

把模块拆分,使用接口通信,降低模块之间的耦合度。

把项目拆分成若干个子项目,不同的团队负责不同的子项目。

增加功能时只需要再增加一个子项目,调用其他系统的接口就可以。

可以灵活的进行分布式部署。

缺点:

1、系统之间交互需要使用远程通信,接口开发增加工作量。

2、各个模块有一些通用的业务逻辑无法共用。

基于soa的架构

SOA:面向服务的架构。也就是把工程拆分成服务层、表现层两个工程。服务层中包含业务逻辑,只需要对外提供服务即可。表现层只需要处理和页面的交互,业务逻辑都是调用服务层的服务来实现。

分布式架构和soa架构有什么区别?

SOA,主要还是从服务的角度,将工程拆分成服务层、表现层两个工程。

分布式,主要还是从部署的角度,将应用按照访问压力进行归类,主要目标是充分利用服务器的资源,避免资源分配不均

集群:

一个集群系统是一群松散结合的服务器组,形成一个虚拟的服务器,为客户端用户提供统一的服务。对于这个客户端来说,通常在访问集群系统时不会意识到它的服务是由具体的哪一台服务器提供。集群的目的,是为实现负载均衡、容错和灾难恢复。以达到系统可用性和可伸缩性的要求。集群系统一般应具高可用性、可伸缩性、负载均衡、故障恢复和可维护性等特殊性能。一般同一个工程会部署到多台服务器上。

常见的tomcat集群,Redis集群,Zookeeper集群,数据库集群

分布式与集群的区别:

分布式是指将不同的业务分布在不同的地方。 而集群指的是将几台服务器集中在一起,实现同一业务。一句话:分布式是并联工作的,集群是串联工作的。

分布式中的每一个节点,都可以做集群。 而集群并不一定就是分布式的。

举例:就比如新浪网,访问的人多了,他可以做一个群集,前面放一个响应服务器,后面几台服务器完成同一业务,如果有业务访问的时候,响应服务器看哪台服务器的负载不是很重,就将给哪一台去完成。

而分布式,从窄意上理解,也跟集群差不多, 但是它的组织比较松散,不像集群,有一个组织性,一台服务器垮了,其它的服务器可以顶上来。

分布式的每一个节点,都完成不同的业务,一个节点垮了,哪这个业务就不可访问了。

分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。

举例:如果一个任务由10个子任务组成,每个子任务单独执行需1小时,则在一台服务器上执行该任务需10小时。

采用分布式方案,提供10台服务器,每台服务器只负责处理一个子任务,不考虑子任务间的依赖关系,执行完这个任务只需一个小时。(这种工作模式的一个典型代表就是Hadoop的Map/Reduce分布式计算模型)

而采用集群方案,同样提供10台服务器,每台服务器都能独立处理这个任务。假设有10个任务同时到达,10个服务器将同时工作,1小时后,10个任务同时完成,这样,整身来看,还是1小时内完成一个任务!

高并发:

处理高并发常见的方法有哪些?

1、HTML静态化  freemaker

其实大家都知道,效率最高、消耗最小的就是纯静态化的html页面,所以我们尽可能使我们的网站上的页面采 用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,我们无法全部手动去挨个实现,于是出现了我们常见的信息 发布系统CMS,像我们常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录 入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。

除了门户和信息发布类型的网站,对于交互性要求很高的社区类型网站来说,尽可能的静态化也是提高性能的必要手段,将社区内的帖子、文章进行实时的静态化,有更新的时候再重新静态化也是大量使用的策略,像Mop的大杂烩就是使用了这样的策略,网易社区等也是如此。

同 时,html静态化也是某些缓存策略使用的手段,对于系统中频繁使用数据库查询但是内容更新很小的应用,可以考虑使用html静态化来实现,比如论坛中论 坛的公用设置信息,这些信息目前的主流论坛都可以进行后台管理并且存储再数据库中,这些信息其实大量被前台程序调用,但是更新频率很小,可以考虑将这部分 内容进行后台更新的时候进行静态化,这样避免了大量的数据库访问请求。

2、图片服务器分离

大家知道,对于Web服务器来说,不管 是 Apache、IIS还是其他容器,图片是最消耗资源的,于是我们有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的图片服 务器,甚至很多台图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃,在应用服务器和图片服务器 上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持,尽可能少的LoadModule,保证更高的系统消耗 和执行效率。

3、数据库集群和库表散列

大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是我们需要使用数据库集群或者库表散列。

在数据库集群方面,很多数据库都有自己的解决方案,Oracle、Sybase等都有很好的方案,常用的MySQL提供的Master/Slave也是类似的方案,您使用了什么样的DB,就参考相应的解决方案来实施即可。

上 面提到的数据库集群由于在架构、成本、扩张性方面都会受到所采用DB类型的限制,于是我们需要从应用程序的角度来考虑改善系统架构,库表散列是常用并且最 有效的解决方案。我们在应用程序中安装业务和应用或者功能模块将数据库进行分离,不同的模块对应不同的数据库或者表,再按照一定的策略对某个页面或者功能 进行更小的数据库散列,比如用户表,按照用户ID进行表散列,这样就能够低成本的提升系统的性能并且有很好的扩展性。sohu的论坛就是采用了这样的架 构,将论坛的用户、设置、帖子等信息进行数据库分离,然后对帖子、用户按照板块和ID进行散列数据库和表,最终可以在配置文件中进行简单的配置便能让系统 随时增加一台低成本的数据库进来补充系统性能。

4、缓存

缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。这里先讲述最基本的两种缓存。高级和分布式的缓存在后面讲述。

架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。

网 站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大 型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多 了,.net不是很熟悉,相信也肯定有。

5、镜像

镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同网 络接入商和地域带来的用户访问速度差异,比如ChinaNet和EduNet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实 时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等 工具。

6、负载均衡

负载均衡将是大型网站解决高负荷访问和大量并发请求采用的终极解决办法。

负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择,我个人接触过一些解决方法,其中有两个架构可以给大家做参考。

高可用:

通常企业级应用系统(特别是政府部门和大企业的应用系统)一般会采用安规的软硬件设备,如IOE(IBM的小型机、Oracle数据、EMC存储设备)系列。而一般互联网公司更多地采用PC级服务器(x86),开源的数据库(MySQL)和操作系统(Linux)组建廉价且高容错(硬件故障是常态)的应用集群。

(1)设计的目的?

 保证服务器硬件故障服务依然可用,数据依然保存并能够被访问。

(2)主要的手段?

 数据和服务的①冗余备份以及②失效转移:

 对于服务而言,一旦某个服务器宕机,就将服务切换到其他可用的服务器上;

 对于数据而言,如果某个磁盘损坏,就从备份的磁盘(事先就做好了数据的同步复制)读取数据。

高可用的服务

 高可用的服务模块为业务产品提供基础公共服务,在大型站点中这些服务通常都独立分布式部署,被具体应用远程调用。

 在具体实践中,有以下几点高可用的服务策略可以参考:

 ①分级管理:核心应用和服务具有更高的优先级,比如用户及时付款比能否评价商品更重要;

 ②超时设置:设置服务调用的超时时间,一旦超时后,通信框架抛出异常,应用程序则根据服务调度策略选择重试or请求转移到其他服务器上;

 ③异步调用:通过消息队列等异步方式完成,避免一个服务失败导致整个应用请求失败的情况。

不是所有服务都可以异步调用,对于获取用户信息这类调用,采用异步方式会延长响应时间,得不偿失。对于那些必须确认服务调用成功后才能继续进行下一步的操作的应用也不适合异步调用。

 ④服务降级:网站访问高峰期间,为了保证核心应用的正常运行,需要对服务降级。

 降级有两种手段:一是拒绝服务,拒绝较低优先级的应用的调用,减少服务调用并发数,确保核心应用的正常运行;二是关闭功能,关闭部分不重要的服务,或者服务内部关闭部分不重要的功能,以节约系统开销,为核心应用服务让出资源;

 ⑤幂等性设计:保证服务重复调用和调用一次产生的结果相同;

高可用的数据

 保证数据高可用的主要手段有两种:一是数据备份,二是失效转移机制;

 ①数据备份:又分为冷备份和热备份,冷备份是定期复制,不能保证数据可用性。热备份又分为异步热备和同步热备,异步热备是指多份数据副本的写入操作异步完成,而同步方式则是指多份数据副本的写入操作同时完成。

 关系数据库的热备机制就是通常所说的主从同步机制,实践中通常使用读写分离的方法来访问Master和Slave数据库,也就是说写操作只访问Master库,读操作均访问Slave库。

②失效转移:若数据服务器集群中任何一台服务器宕机,那么应用程序针对这台服务器的所有读写操作都要重新路由到其他服务器,保证数据访问不会失败。

网站运行监控

  ”不允许没有监控的系统上线“

  (1)监控数据采集

①用户行为日志收集:服务器端的日志收集和客户端的日志收集;目前许多网站逐步开发基于实时计算框架Storm的日志统计与分析工具;

 ②服务器性能监控:收集服务器性能指标,如系统Load、内存占用、磁盘IO等,及时判断,防患于未然;

 ③运行数据报告:采集并报告,汇总后统一显示,应用程序需要在代码中处理运行数据采集的逻辑;

 (2)监控管理

 ①系统报警:配置报警阀值和值守人员联系方式,系统发生报警时,即使工程师在千里之外,也可以被及时通知;

 ②失效转移:监控系统在发现故障时,主动通知应用进行失效转移;

 ③自动优雅降级:为了应付网站访问高峰,主动关闭部分功能,释放部分系统资源,保证核心应用服务的正常运行;—>网站柔性架构的理想状态

主从切换

很好理解,当其中一台机器的服务宕机后,对于服务调用者来说,能够迅速的切换到其他可用服务,从服务升级为主服务,这种切换速度应当控制在秒级别(几秒钟)。

当宕机的服务恢复之后,自动变为从服务,主从服务角色切换。主从切换一定是要付出代价的,所以当主服务恢复之后,也就不再替换现有的主服务。

负载均衡

当服务的请求量比较高的时候,一台服务不能满足需求,这时候需要多台机器提供同样的服务,将所有请求分发到不同机器上。

高可用架构中应该具有丰富的负载均衡策略和易调节负载的方式。

甚至可以自动化智能调节,例如由于机器性能的原因,响应时间可能不一样,这时候可以向性能差的机器少一点分发量,保证各个机器响应时间的均衡。

易横向扩展

当用户量越来越多,已有服务不能承载更多的用户的时候,便需要对服务进行扩展,扩展的方式最好是不触动原有服务,对于服务的调用者是透明的。


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
5月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
1600 57
|
4月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
1154 7
|
5月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
396 3
|
6月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
7月前
|
消息中间件 NoSQL 关系型数据库
去哪面试:1Wtps高并发,MySQL 热点行 问题, 怎么解决?
去哪面试:1Wtps高并发,MySQL 热点行 问题, 怎么解决?
去哪面试:1Wtps高并发,MySQL 热点行 问题, 怎么解决?
|
8月前
|
算法 NoSQL 应用服务中间件
阿里面试:10WQPS高并发,怎么限流?这份答案让我当场拿了offer
在 Nacos 的配置管理界面或通过 Nacos 的 API,创建一个名为(与配置文件中 dataId 一致)的配置项,用于存储 Sentinel 的流量控制规则。上述规则表示对名为的资源进行流量控制,QPS 阈值为 10。resource:要保护的资源名称。limitApp:来源应用,default表示所有应用。grade:限流阈值类型,1 表示 QPS 限流,0 表示线程数限流。count:限流阈值。strategy:流控模式,0 为直接模式,1 为关联模式,2 为链路模式。
阿里面试:10WQPS高并发,怎么限流?这份答案让我当场拿了offer
|
9月前
|
NoSQL 关系型数据库 MySQL
招行面试:高并发写,为什么不推荐关系数据?
资深架构师尼恩针对高并发场景下为何不推荐使用关系数据库进行数据写入进行了深入剖析。文章详细解释了关系数据库(如MySQL)在高并发写入时的性能瓶颈,包括存储机制和事务特性带来的开销,并对比了NoSQL数据库的优势。通过具体案例和理论分析,尼恩为读者提供了系统化的解答,帮助面试者更好地应对类似问题,提升技术实力。此外,尼恩还分享了多个高并发系统的解决方案及优化技巧,助力开发者在面试中脱颖而出。 文章链接:[原文链接](https://mp.weixin.qq.com/s/PKsa-7eZqXDg3tpgJKCAAw) 更多技术资料和面试宝典可关注【技术自由圈】获取。
|
10月前
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
|
12月前
|
NoSQL Java Redis
京东双十一高并发场景下的分布式锁性能优化
【10月更文挑战第20天】在电商领域,尤其是像京东双十一这样的大促活动,系统需要处理极高的并发请求。这些请求往往涉及库存的查询和更新,如果处理不当,很容易出现库存超卖、数据不一致等问题。
309 1
|
12月前
|
缓存 算法 架构师
京东面试:如何设计600Wqps高并发ID?如何解决时钟回拨问题?
资深架构师尼恩在其读者交流群中分享了关于分布式ID系统的设计与实现,特别是针对高并发场景下的解决方案。他强调了分布式ID系统在高并发核心组件中的重要性,并详细介绍了百度的UidGenerator,这是一个基于Snowflake算法改进的Java实现,旨在解决分布式系统中的唯一ID生成问题。UidGenerator通过自定义workerId位数和初始化策略,支持虚拟化环境下的实例自动重启和漂移,其单机QPS可达600万。此外尼恩的技术分享不仅有助于提升面试表现,还能帮助开发者在实际项目中应对高并发挑战。
京东面试:如何设计600Wqps高并发ID?如何解决时钟回拨问题?

热门文章

最新文章

相关实验场景

更多
下一篇
oss教程