搞清楚系统到底怎样支撑高并发以及架构图的绘制(面试向)

简介: 大多数人面试的时候经常会被问到:你简历上有高负载高并发的经验,那到底你的系统是怎样设计的?如果没有过相关的项目经验,大多数同学被问到这个问题压根儿没什么思路去回答,不知道从什么地方说起,其实,就算没有相关的经验,只要事先编好话术,搞清楚架构图,回答此类问题也还是可以滴水不漏的。

大多数人面试的时候经常会被问到:你简历上有高负载高并发的经验,那到底你的系统是怎样设计的?

如果没有过相关的项目经验,大多数同学被问到这个问题压根儿没什么思路去回答,不知道从什么地方说起,其实,就算没有相关的经验,只要事先编好话术,搞清楚架构图,回答此类问题也还是可以滴水不漏的。

首先,在脑子里虚拟一个大用户量背景下的场景,如果我们手头有几台4核8g的服务器,假设一个平台用户量是500万。此时日活用户是50万,日访问量在600-700万左右,高峰期对系统每秒请求是500/s。然后对数据库的每秒请求数量是1500/s,这个时候会怎么样呢?如果系统内处理的是较为复杂的一些业务逻辑,是那种重业务逻辑的系统的话,是比较耗费CPU的。此时,4核8G的机器每秒请求达到500/s的时候,很可能你的机器CPU负载较高了。然后数据库层面,以上述的配置而言,其实基本上1500/s的高峰请求压力的话,还算可以接受。这个主要是要观察数据库所在机器的磁盘负载、网络负载、CPU负载、内存负载,按照我们的线上经验而言,那个配置的数据库在1500/s请求压力下是没问题的。所以此时需要做的一个事情,首先就是要支持你的系统集群化部署。可以在前面挂一个负载均衡层,把请求均匀打到系统层面,让系统可以用多台机器集群化支撑更高的并发压力。比如说这里假设给系统增加部署一台机器,那么每台机器就只有250/s的请求了。这样一来,两台机器的CPU负载都会明显降低,这个初步的“高并发”不就先抗住住了吗?要是连这个都不做,那单台机器负载越来越高的时候,极端情况下是可能出现机器上部署的系统无法有足够的资源响应请求了,然后出现请求卡死,甚至系统宕机之类的问题。所以,简单小结,第一步要做的:添加负载均衡层,将请求均匀打到系统层。系统层采用集群化部署多台机器,扛住初步的并发压力。

架构图如下:

然后,经过了几个月的增长期,假设此时用户量继续增长,达到了1000万注册用户,然后每天日活用户是100万,日访问量在800-1000万。那么此时对系统层面的请求量会达到每秒1000/s,系统层面,你可以继续通过集群化的方式来扩容,反正前面的负载均衡层会均匀分散流量过去的。但是,这时数据库层面接受的请求量会达到3000/s,这个就有点问题了。此时数据库层面的并发请求翻了一倍,你一定会发现线上的数据库负载越来越高。每次到了高峰期,磁盘IO、网络IO、内存消耗、CPU负载的压力都会很高,大家很担心数据库服务器能否抗住。没错,一般来说,对那种普通配置的线上数据库,建议就是读写并发加起来,按照上述我们举例的那个配置,不要超过3000/s。因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这是作为主库承载写入请求的。然后每个主库都挂载至少一个从库,由从库来承载读请求。此时假设对数据库层面的读写并发是3000/s,其中写并发占到了1000/s,读并发占到了2000/s。那么一旦分库分表之后,采用两台数据库服务器上部署主库来支撑写请求,每台服务器承载的写并发就是500/s。每台主库挂载一个服务器部署从库,那么2个从库每个从库支撑的读并发就是1000/s。简单总结,并发量继续增长时,我们就需要专注在数据库层面:分库分表、读写分离。

如果注册用户量越来越大,此时你可以不停地加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的。所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果不停地加机器,这是不对的。在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。比如说上面那个图里,读请求目前是每秒1000/s,两个从库各自抗了500/s读请求,但是其中可能每秒800次的读请求都是可以直接读缓存里的不怎么变化的数据的。那么此时你一旦引入缓存集群,就可以抗下来这800/s读请求,落到数据库层面的读请求就200/s。

架构图如下:

初步来说,简单的一个高并发系统的阐述是说完了,是不是很简单呢?

相关文章
|
1月前
|
SQL 前端开发 关系型数据库
如何开发一套研发项目管理系统?(附架构图+流程图+代码参考)
研发项目管理系统助力企业实现需求、缺陷与变更的全流程管理,支持看板可视化、数据化决策与成本优化。系统以MVP模式快速上线,核心功能包括需求看板、缺陷闭环、自动日报及关键指标分析,助力中小企业提升交付效率与协作质量。
|
1月前
|
JSON 文字识别 BI
如何开发车辆管理系统中的加油管理板块(附架构图+流程图+代码参考)
本文针对中小企业在车辆加油管理中常见的单据混乱、油卡管理困难、对账困难等问题,提出了一套完整的系统化解决方案。内容涵盖车辆管理系统(VMS)的核心功能、加油管理模块的设计要点、数据库模型、系统架构、关键业务流程、API设计与实现示例、前端展示参考(React + Antd)、开发技巧与工程化建议等。通过构建加油管理系统,企业可实现燃油费用的透明化、自动化对账、异常检测与数据分析,从而降低运营成本、提升管理效率。适合希望通过技术手段优化车辆管理的企业技术人员与管理者参考。
|
1月前
|
消息中间件 缓存 JavaScript
如何开发ERP(离散制造-MTO)系统中的生产管理板块(附架构图+流程图+代码参考)
本文详解离散制造MTO模式下的ERP生产管理模块,涵盖核心问题、系统架构、关键流程、开发技巧及数据库设计,助力企业打通计划与执行“最后一公里”,提升交付率、降低库存与浪费。
|
14天前
|
前端开发 JavaScript BI
如何开发车辆管理系统中的车务管理板块(附架构图+流程图+代码参考)
本文介绍了中小企业如何通过车务管理模块提升车辆管理效率。许多企业在管理车辆时仍依赖人工流程,导致违章处理延误、年检过期、维修费用虚高等问题频发。将这些流程数字化,可显著降低合规风险、提升维修追溯性、优化调度与资产利用率。文章详细介绍了车务管理模块的功能清单、数据模型、系统架构、API与前端设计、开发技巧与落地建议,以及实现效果与验收标准。同时提供了数据库建表SQL、后端Node.js/TypeScript代码示例与前端React表单设计参考,帮助企业快速搭建并上线系统,实现合规与成本控制的双重优化。
|
1月前
|
数据采集 运维 数据可视化
AR 运维系统与 MES、EMA、IoT 系统的融合架构与实践
AR运维系统融合IoT、EMA、MES数据,构建“感知-分析-决策-执行”闭环。通过AR终端实现设备数据可视化,实时呈现温度、工单等信息,提升运维效率与生产可靠性。(238字)
|
1月前
|
消息中间件 JavaScript 前端开发
如何开发ERP(离散制造-MTO)系统中的技术管理板块(附架构图+流程图+代码参考)
本文详解ERP(离散制造-MTO)系统中的技术管理板块,涵盖产品定义、BOM、工序、工艺文件及变更控制的结构化与系统化管理。内容包括技术管理的核心目标、总体架构、关键组件、业务流程、开发技巧与最佳实践,并提供完整的参考代码,助力企业将技术数据转化为可执行的生产指令,提升制造效率与质量。
|
27天前
|
人工智能 监控 测试技术
告别只会写提示词:构建生产级LLM系统的完整架构图​
本文系统梳理了从提示词到生产级LLM产品的八大核心能力:提示词工程、上下文工程、微调、RAG、智能体开发、部署、优化与可观测性,助你构建可落地、可迭代的AI产品体系。
332 51
|
21天前
|
机器学习/深度学习 人工智能 缓存
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
本文提出面向边缘通用智能的多大语言模型(Multi-LLM)系统,通过协同架构、信任机制与动态编排,突破传统边缘AI的局限。融合合作、竞争与集成三种范式,结合模型压缩、分布式推理与上下文优化技术,实现高效、可靠、低延迟的边缘智能,推动复杂场景下的泛化与自主决策能力。
128 3
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
|
19天前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
|
26天前
|
消息中间件 数据采集 NoSQL
秒级行情推送系统实战:从触发、采集到入库的端到端架构
本文设计了一套秒级实时行情推送系统,涵盖触发、采集、缓冲、入库与推送五层架构,结合动态代理IP、Kafka/Redis缓冲及WebSocket推送,实现金融数据低延迟、高并发处理,适用于股票、数字货币等实时行情场景。
157 3
秒级行情推送系统实战:从触发、采集到入库的端到端架构