Pytorch实现机器学习之线性回归2.0

简介: Pytorch实现机器学习之线性回归2.0

一、Pytorch实现机器学习之线性回归1.0,特点在利用tensor手动实现线性回归反向传播。

点击打开《Pytorch实现机器学习之线性回归》文章

二、Pytorch实现机器学习之线性回归2.0,特点在利用autograd和Variable实现线性回归,并且反向传播自动调用backward实现。

import torch as t
from matplotlib import pyplot as plt
from IPython import display
from torch.autograd import Variable as V
t.manual_seed(10) # 设置随机数种子
def get_randn_data(batch_size=8):
    """产生随机数x并给线性函数y=2x+3加上噪声,便于后面学习能否贴近结果"""
    x = t.randn(batch_size,1)*20
    y = x * 2 + (1 + t.randn(batch_size,1))*3
    return x,y
# 随机初始化参数w和零初始化参数b,variable格式
w = V(t.randn(1,1),requires_grad=True)
b = V(t.zeros(1,1),requires_grad=True)
# 设置学习率或者步长
lr = 0.0001
# 创建列表分别存储参数w和b的变化值
listw = []
listb = []
for count in range(20000): # 训练20000次并测试输出
    # 训练过程
    x,y = get_randn_data() # x,y都是真实数据也就是实际值
    x,y = V(x),V(y) # tensor转换成variable
    # 前向传播,从头往后传到得出预测值,再得出损失函数下损失值
    y_p = x.mm(w) + b.expand_as(y) # 实现的就是通过参数w和b和因变量x计算预测值y_p = wx + b
    loss = 0.5 * (y_p - y) ** 2 # 实现的就是计算损失函数的损失值loss = 1/2(y_p - y) ** 2
    loss = loss.sum() # loss为variable格式,所以要计算损失函数的值需要全部加起来得出总和
    # 反向传播,自行计算梯度
    # loss.backward(t.ones(loss.size())) # 当loss非一维variable时采用
    loss.backward()
    # 相减实现梯度下降,更新参数w和b,因为variable本身不能实现inplace操作,所以要将w和b从variable转换成tensor,data存储是tensor
    w.data.sub_(lr * w.grad.data)
    b.data.sub_(lr * b.grad.data)
    # 梯度清零
    w.grad.data.zero_()
    b.grad.data.zero_()
    # 测试输出过程
    # 每训练1000次输出训练实现预测结果一次,画图(线和散点)
    if count % 1000 == 0:
        # 设置画图中横纵坐标的范围
        plt.xlim(0,20)
        plt.ylim(0,45)
        display.clear_output(wait=True) # 清空并显示实时数据动态表示
        # 训练得到的函数模型显示的线性图形
        x1 = t.arange(0,20).view(-1,1) # view为-1时会tensor根据元素自动计算维度大小
        x1 = x1.float()
        y1 = x1.mm(w.data) + b.data.expand_as(x1) # 计算需要的是tensor格式而非variable
        plt.plot(x1.squeeze().numpy(),y1.squeeze().numpy())
        # 随机生成的测试数据,用来检验函数模型是否匹配随机测试数据点状图形
        x2,y2 = get_randn_data(batch_size=20)
        plt.scatter(x2.squeeze().numpy(),y2.squeeze().numpy())
        # 图像输出并在2秒后自动关闭
        plt.show(block=False)
        plt.pause(2)
        plt.close()
        # 输出每次训练后的模型参数w和b的值,也可以看出w和b的变化趋势
        # print(w.squeeze().numpy(), b.squeeze().numpy())
        # 收集参数w和b每次训练变化的值,实现后面参数值线性回归变化点状图的显示
        listw.append((w.data.squeeze().numpy().tolist())) # tensor->numpy->list
        listb.append((b.data.squeeze().numpy().tolist()))
# 参数值线性回归变化点状图的显示
plt.title("Point diagram of linear regression change of parameter value")
plt.xlabel("parameter w")
plt.ylabel("parameter b")
plt.scatter(listw,listb)
plt.show(block=False)
plt.pause(10)
plt.close()

三、代码理解过程中可能需要用到的文章如下:

1.python以三维tensor为例详细理解unsqueeze和squeeze函数

2.Pytorch中设计随机数种子的必要性

3.Pytorch中autograd.Variable.backward的grad_varables参数个人理解浅见


相关文章
|
5月前
|
机器学习/深度学习 监控 安全
从实验室到生产线:机器学习模型部署的七大陷阱及PyTorch Serving避坑指南
本文深入探讨了机器学习模型从实验室到生产环境部署过程中常见的七大陷阱,并提供基于PyTorch Serving的解决方案。内容涵盖环境依赖、模型序列化、资源管理、输入处理、监控缺失、安全防护及模型更新等关键环节。通过真实案例分析与代码示例,帮助读者理解部署失败的原因并掌握避坑技巧。同时,文章介绍了高级部署架构、性能优化策略及未来趋势,如Serverless服务和边缘-云协同部署,助力构建稳健高效的模型部署体系。
221 4
|
6月前
|
PyTorch 调度 算法框架/工具
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
325 18
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
|
机器学习/深度学习 并行计算 PyTorch
优化技巧与策略:提高 PyTorch 模型训练效率
【8月更文第29天】在深度学习领域中,PyTorch 是一个非常流行的框架,被广泛应用于各种机器学习任务中。然而,随着模型复杂度的增加以及数据集规模的增长,如何有效地训练这些模型成为了一个重要的问题。本文将介绍一系列优化技巧和策略,帮助提高 PyTorch 模型训练的效率。
1013 0
|
11月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
202 3
|
12月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
155 3
|
12月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
机器学习/深度学习 TensorFlow 算法框架/工具
探索机器学习:从线性回归到深度学习
在这篇文章中,我们将一起踏上一场激动人心的旅程,穿越机器学习的广阔天地。我们将从最基本的线性回归开始,逐步深入到复杂的深度学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。让我们一起探索这个充满无限可能的世界吧!
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
1008 1
|
机器学习/深度学习 数据采集 算法
探索机器学习中的线性回归
【10月更文挑战第25天】本文将深入浅出地介绍线性回归模型,一个在机器学习领域中广泛使用的预测工具。我们将从理论出发,逐步引入代码示例,展示如何利用Python和scikit-learn库实现一个简单的线性回归模型。文章不仅适合初学者理解线性回归的基础概念,同时也为有一定基础的读者提供实践指导。
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习:从线性回归到深度学习
【9月更文挑战第4天】在这篇文章中,我们将深入探讨机器学习的世界,从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过实际的代码示例,揭示这些模型背后的数学原理,以及如何在现实世界的问题中应用它们。无论你是初学者还是有经验的数据科学家,这篇文章都将为你提供新的视角和深入的理解。

热门文章

最新文章

推荐镜像

更多